Glypican-1 identifies cancer exosomes and detects early pancreatic cancer (original) (raw)
Related papers
2017
Exosomes are man-sized vesicles shed by all cells, including cancer cells. Exosomes can serve as novel liquid biopsies for diagnosis of cancer with potential prognostic value. The exact mechanism/s associated with sorting or enrichment of cellular components into exosomes are still largely unknown. We reported Glypican-1 (GPC1) on the surface of cancer exosomes and provided evidence for the enrichment of GPC1 in exosomes from patients with pancreatic cancer1. Several different laboratories have validated this novel conceptual advance and reproduced the original experiments using multiple antibodies from different sources. These include anti-GPC1 antibodies from ThermoFisher (PA5-28055 and PA-5-24972)1,2, Sigma (SAB270028), Abnova (MAB8351, monoclonal antibodies clone E9E)3, EMD Millipore (MAB2600-monoclonal antibodies)4, SantaCruz5, and R&D Systems (BAF4519)2. This report complements such independent findings and report on the specific detection of Glypican-1 on the exosomes derived...
Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden
Oncotarget, 2018
Glypican-1 (GPC1) is expressed in pancreatic ductal adenocarcinoma (PDAC) cells and adjacent stromal fibroblasts. Recently, GPC1 circulating exosomes (crExos) have been shown to be able to detect early stages of PDAC. In this study, we investigated the usefulness of crExos GPC1 as a biomarker for PDAC. Plasma was obtained from patients with benign pancreatic disease ( = 16) and PDAC ( = 27) prior to pancreatectomy, and crExos were isolated by ultra-centrifugation. Protein was extracted from surgical specimens (adjacent normal pancreas, = 13; and PDAC, = 17). GPC1 levels were measured using enzyme-linked immunosorbent assay (ELISA). There was no significant difference in GPC1 levels between normal pancreas and PDAC tissues. This was also true when comparing matched pairs. However, GPC1 levels were enriched in PDAC crExos ( = 11), compared to the source tumors ( = 11; 97 ± 54 vs. 20.9 ± 12.3 pg/mL; < 0.001). In addition, PDACs with high GPC1 expression tended to have crExos with hi...
The involvement of exosomes in the diagnosis and treatment of pancreatic cancer
Molecular Cancer, 2020
At the moment, pancreatic cancer is among the deadliest gastrointestinal diseases, and pancreatic cancer growth is a complex biological process that is based on different kinds of genes. Exosomes are extracellular vesicles containing microRNAs (miRNAs), messenger RNA (mRNA), and proteins, they act as the most prominent mediator of intercellular communication, and they regulate, instruct, and re-educate their surrounding microenvironment and target specific organs. Due to accumulative evidence proved that exosomes are involved in metastasis, cell proliferation, EMT, angiogenesis, and TME of pancreatic cancer, exosomes are crucial potential candidates to detect pancreatic cancer early. This review aims to convey the current understanding of the main functions employed by exosomes in early diagnosis and treatment of pancreatic cancer.
Journal of Clinical Medicine, 2019
Exosomes are nano-sized membranous vesicles of endosomal origin that carry nucleic acids, lipids and proteins. The cargo of exosomes is cell origin specific and the release of these exosomes and uptake by an acceptor cell is seen as a vital element of cell-cell communication. Here, we sought to investigate the diagnostic and prognostic value of the expression of glypican 3 (GPC3) on primary gastro-esophageal adenocarcinoma (GEA) tissue (tGPC3) and corresponding serum exosomes (eGPC3). Circulating exosomes were extracted from serum samples of 49 patients with GEA and 56 controls. Extracted exosomes were subjected to flow cytometry for the expression of eGPC3 and GPC3 expression on primary GEA tissue samples was determined by immunohistochemistry and correlated to clinicopathological parameters. We found decreased eGPC3 levels in GEA patients compared to healthy controls (p < 0.0001) and high tGPC3 expression. This was significantly associated with poor overall survival (high vs. l...
Cancer letters, 2017
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that often presents clinically at an advanced stage and that may be confused with chronic pancreatitis (CP). Conversely, CP may be misdiagnosed as PDAC leading to unwarranted pancreas resection. Therefore, early PDAC diagnosis and clear differentiation between PDAC and CP are crucial for improved care. Exosomes are circulating microvesicles whose components can serve as cancer biomarkers. We compared exosomal glypican-1 (GPC1) and microRNA levels in normal control subjects and in patients with PDAC and CP. We report that exosomal GPC1 is not diagnostic for PDAC, whereas high exosomal levels of microRNA-10b, (miR-10b), miR-21, miR-30c, and miR-181a and low miR-let7a readily differentiate PDAC from normal control and CP samples. By contrast with GPC1, elevated exosomal miR levels decreased to normal values within 24 h following PDAC resection. All 29 PDAC cases exhibited significantly elevated exosomal miR-10b and miR-30c ...
Exosomes: Key tools for cancer liquid biopsy
BIOCELL
Precision medicine is based on the identification of biomarkers of tumor development and progression. Liquid biopsy is at the forefront of the ability to gather diagnostic and prognostic information on tumors, as it can be noninvasively performed prior or during treatment. Liquid biopsy mostly utilizes circulating tumor cells, or free DNA, but also exosomes. The latter are nanovesicles secreted by most cell types, found in any body fluid that deliver proteins, nucleic acids and lipids to nearby and distant cells with a unique homing ability. Exosomes function in signalling between the tumor microenvironment and the rest of the body, promoting metastasis, immune remodelling and drug resistance. Exosomes are emerging as a key tool in precision medicine for cancer liquid biopsy, as they efficiently preserve their biomarker cargo. Moreover, exosomes strongly resemble the parental cell, which can help in assessing the oxidative and metabolic state of the donor cell. In this respect, exosomes represent one of the most promising new tools to fight cancer. This review will discuss the clinical applications of profiling exosomal proteins and lipids by high-throughput proteomics and metabolomics, and nucleic acids by next generation sequencing, as well as how this may allow cancer diagnosis, therapy response monitoring and recurrence detection.
The Proteome of Pancreatic Cancer‐Derived Exosomes Reveals Signatures Rich in Key Signaling Pathways
PROTEOMICS, 2019
Exosomes are membrane-bound vesicles that traffic small molecular cargos. These cargos participate in cell-cell communication and contribute to the pathogenesis of many disease states, including cancer. How these mechanisms contribute to communication within the pancreatic adenocarcinoma (PDAC) microenvironment and how they contribute to PDAC biology are poorly understood. In this study, we performed comprehensive, quantitative comparisons of the proteomes of three PDAC cell lines to those of the exosomes they produce. Approximately 35% of whole cell proteins sort into exosomes. ANalysis of Composition Of Microbiomes (ANCOM) analysis determined a cluster of 98 enriched Pancreatic Cancer Exosome Proteins (ePC-ECPs). Further, these proteins are predicted by Ingenuity Pathway Analysis (IPA) as actively involved in signaling pathways regulating cell death and survival, cellular movement, and cell-to-cell signaling and interaction in particular (the top three p-value significant pathways). Significant enrichment of canonical pathways of Acute Phase Response Signaling (inflammatory response signaling pathways) and FXR and RXR activation in metabolic pathways are also predicted. Ninety-seven ePC-ECPs are associated with cancer and among them, 34 of those proteins are specifically associated with PDAC. In conclusion, exosomes from PDAC are enriched with cancer-associated signaling proteins. Further assessment of these proteins as PDAC biomarkers or therapeutic targets is warranted.
Cancers
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of...
Proteomes
Exosomes belong to the group of extracellular vesicles (EVs) that derive from various cell populations and mediate intercellular communication in health and disease. Like hormones or cytokines, exosomes released by cells can play a potent role in the communication between the cell of origin and distant cells in the body to maintain homeostatic or pathological processes, including tumorigenesis. The nucleic acids, and lipid and protein cargo present in the exosomes are involved in a myriad of carcinogenic processes, including cell proliferation, tumor angiogenesis, immunomodulation, and metastasis formation. The ability of exosomal proteins to mediate direct functions by interaction with other cells qualifies them as tumor-specific biomarkers and targeted therapeutic approaches. However, the heterogeneity of plasma-derived exosomes consistent of (a) exosomes derived from all kinds of body cells, including cancer cells and (b) contamination of exosome preparation with other extracellu...