Changes in TNFa, NF B and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation (original) (raw)

Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation

Journal of Neuroinflammation, 2010

Background: Unilateral vestibular deafferentation results in strong microglial and astroglial activation in the vestibular nuclei (VN) that could be due to an inflammatory response. This study was aimed at determining if markers of inflammation are upregulated in the VN after chemical unilateral labyrinthectomy (UL) in the rat, and if the inflammatory response, if any, induces the expression of neuroprotective factors that could promote the plasticity mechanisms involved in the vestibular compensation process. The expressions of inflammatory and neuroprotective factors after chemical or mechanical UL were also compared to verify that the inflammatory response was not due to the toxicity of sodium arsanilate. Methods: Immunohistological investigations combined the labeling of tumor necrosis factor α (TNFα), as a marker of the VN inflammatory response, and of nuclear transcription factor B (NFB) and manganese superoxide dismutase (MnSOD), as markers of neuroprotection that could be expressed in the VN because of inflammation. Immunoreactivity (Ir) of the VN cells was quantified in the VN complex of rats. Behavioral investigations were performed to assess the functional recovery process, including both static (support surface) and dynamic (airrighting and landing reflexes) postural tests. Results: Chemical UL (arsanilate transtympanic injection) induced a significant increase in the number of TNFα-Ir cells in the medial and inferior VN on both sides. These changes were detectable as early as 4 h after vestibular lesion, persisted at 1 day, and regained nearly normal values at 3 days. The early increase in TNFα expression was followed by a slightly delayed upregulation of NFB 8 h after chemical UL, peaking at 1 day, and regaining control values 3 days later. By contrast, upregulation of MnSOD was more strongly delayed (1 day), with a peak at 3 days, and a return to control values at 15 days. Similar changes of TNFα, NFB, and MnSOD expression were found in rats submitted to mechanical UL. Behavioral observations showed strong posturo-locomotor deficits early after chemical UL (1 day) and a complete functional recovery 6 weeks later. Conclusions: Our results suggest that the upregulation of inflammatory and neuroprotective factors after vestibular deafferentation in the VN may constitute a favorable neuronal environment for the vestibular compensation process.

A new immunohistochemical method to evaluate the development of vestibular compensation after unilateral labyrinthectomy in rats

Acta Oto-Laryngologica, 2019

Background: Unilateral labyrinthectomy (UL) causes disappearance of ipsilateral medial vestibular nuclear (ipsi-MVe) activity and induces spontaneous nystagmus (SN), which disappears during the initial process of vestibular compensation (VC). Ipsi-MVe-activity restores in the late process of VC. Objectives: We evaluated the late process of VC after UL in rats and examined effects of thioperamide (H3 antagonist) on VC. Material and Methods: MK801 (NMDA antagonist)-induced Fos-like immunoreactive (-LIR) neurons in contra-MVe, which had been suppressed by NMDA-mediated cerebellar inhibition in UL-rats was used as an index. Results: The number of MK801-induced Fos-LIR neurons in contra-MVe gradually decreased to the same level as that of sham-operated rats 14 days after UL. Thioperamide moved the disappearance of the MK801-induced Fos-LIR neurons 2 days earlier. The number of the MK801-induced Fos-LIR neurons in thioperamide-treated rats was significantly decreased, compared with that of vehicle-rats on days 7 and 12 after UL. But, thioperamide did not influence the decline of SN frequency in UL-rats. Conclusion: There findings suggested that the number of MK801-induced Fos-LIR neurons in contra-MVe was decreased in concordance with the restoration of ipsi-MVe-4 activity during the late process of VC after UL and that thioperamide accelerated the late, but not initial process of VC.

The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat

Neuroscience, 2005

In this study, we investigated whether changes in the vestibular neuronal activity per se influence the pattern of astrocytes morphology, glial fibrillary acidic protein (GFAP) expression and ultimately their activation within the vestibular nuclei after unilateral transtympanic tetrodotoxin (TTX) injections and after unilateral inner ear lesion. The rationale was that, theoretically the noninvasive pharmacological functional blockade of peripheral vestibular inputs with TTX, allowed us to dissociate the signals exclusively related to the shutdown of the resting activity of the first-order vestibular neurons and from neuronal signals associated with transganglionic changes in first order vestibular neurons induced by unilateral labyrinthectomy (UL). Since the cochlea was removed during the surgical procedure, we also studied the astrocytic reaction within the deafferented cochlear nuclei. No significant changes in the distribution or relative levels of GFAP mRNA expression, relative levels of GFAP protein or immunoreactivity for GFAP were found in the ipsilateral vestibular nuclei at any post-TTX injection times studied. In addition, no sign of microglia activation was observed. In contrast, a robust increase of the distribution and relative levels of GFAP mRNA expression, protein levels and immunoreactivity was observed in the deafferented vestibular and cochlear nuclei beginning at 1 day after inner ear lesion. GFAP mRNA expression and immunoreactivity in the cochlear nucleus was qualitatively stronger than in the ipsilateral vestibular nuclei. The results suggest that astrocyte activation in the vestibular nuclei is not related to drastic changes of vestibular nuclei neuronal activity per se. Early trans-ganglionic changes due to vestibular nerve dendrites lesion provoked by the mechanical destruction of vestibular receptors, most probably induced the glial reaction. Its functional role in the vestibular compensation process remains to be elucidated.

Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation

The Journal of physiology, 2006

The molecular mechanisms of neural and synaptic plasticity in the vestibular nuclei during 'vestibular compensation', the behavioural recovery that follows deafferentation of one inner ear, are largely unknown. In this study we have used differential proteomics techniques to determine changes in protein expression in ipsi-lesional and contra-lesional medial vestibular nuclei (MVN) of rats, 1 week after either sham surgery or unilateral labyrinthectomy (UL). A systematic comparison of 634 protein spots in two-dimensional electrophoresis gels across five experimental conditions revealed 54 spots, containing 26 proteins whose level was significantly altered 1 week post-UL. The axon-guidance-associated proteins neuropilin-2 and dehydropyriminidase-related protein-2 were upregulated in the MVN after UL. Changes in levels of further specific proteins indicate a coordinated upregulation of mitochondrial function, ATP biosynthesis and phosphate metabolism in the vestibular nuclei 1 ...

Role of the commissural inhibitory system in vestibular compensation in the rat

The Journal of physiology, 2008

We investigated the role of the vestibular commissural inhibitory system in vestibular compensation (VC, the behavioural recovery that follows unilateral vestibular loss), using in vivo microdialysis to measure GABA levels in the bilateral medial vestibular nucleus (MVN) at various times after unilateral labyrinthectomy (UL). Immediately after UL, in close correlation with the appearance of the characteristic oculomotor and postural symptoms, there is a marked increase in GABA release in the ipsi-lesional MVN. This is not prevented by bilateral flocculectomy, indicating that it is due to hyperactivity of vestibular commissural inhibitory neurones. Over the following 96 h, as VC occurs and the behavioural symptoms ameliorate, the ipsi-lesional GABA levels return to near-normal. Contra-lesional GABA levels do not change significantly in the initial stages of VC, but decrease at late stages so that when static symptoms have abated there remains a significant difference between the MVNs...

Evidence for Reactive Astrocytes in Rat Vestibular and Cochlear Nuclei Following Unilateral Inner Ear Lesion

European Journal of Neuroscience, 1996

We investigated whether unilateral removal of the labyrinthine and cochlear receptors induces a macroglial reaction in rat vestibular and cochlear nuclei using vimentin and glial fibrillary acidic protein (GFAP) immunochemical markers. Antibody binding was visualized using the avidin-biotin method and 33-diaminobenzidine as the peroxidase substrate. In addition, double-labelling experiments were performed using specific secondary fluorescent antibodies. Potentially degenerating axon terminals were also studied using a silver impregnation method. In normal adult rats, vimentin was found only in ependymal cells, tanicytes around the fourth ventricle, endothelial cells in the blood vessels and Bergmann glia in the molecular layer of the cerebellum. In lesioned rats, all deafferented vestibular and ventral cochlear nuclei showed strong vimentin immunoreactivity. Furthermore, double-labelling experiments demonstrated that these vimentin-positive cells were also GFAP-positive. The reaction became evident on the second day after the lesion, was intense for 3-8 days and then declined until day 21. No vimentin immunoreactivity could be detected at the level of the ipsilateral dorsal cochlear nucleus. Therefore, unilateral inner ear lesion induced an astroglial reaction within the deafferented vestibular and cochlear nuclei. The decrease in the resting discharge of the primary vestibular afferents and/or in the deafferented central vestibular neurons may induce the glial reaction in the vestibular complex, whereas both degeneration and silence of the cochlear nerve and central cochlear neurons are most probably responsible for the cochlear vimentin-immunoreactive staining. The role of the reactive astrocytes in the vestibular compensation process remains to be determined.

Neurogenic Potential of the Vestibular Nuclei and Behavioural Recovery Time Course in the Adult Cat Are Governed by the Nature of the Vestibular Damage

PLoS ONE, 2011

Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.

In vitro phosphorylation of medial vestibular nucleus and prepositus hypoglossi proteins during behavioural recovery from unilateral vestibular deafferentation in the guinea pig

Brain Research, 1997

. Unilateral removal of vestibular nerve input to the vestibular nuclei e.g. by unilateral labyrinthectomy, UL results in severe ocular Ž . motor and postural disorders which disappear over time vestibular compensation . We investigated whether recovery of ocular motor Ž . function is temporally correlated with changes in protein phosphorylation in the medial vestibular nucleus MVN and prepositus Ž . hypoglossi PH; MVNrPH in vitro. Bilateral MVNrPH were dissected from 48 guinea pigs following decapitation at 10 h, 53 h or 2 w 32 x 2q weeks post-UL, or -sham operation and frozen. Tissue extracts were incubated with g-P ATP " Ca plus phorbol 12,13-dibutyrate 32 Ž and phosphatidylserine. UL resulted in a significant bilateral increase in the P-incorporation into a 65-85 kDa band probably the . Ž . myristoylated alanine-rich C kinase substrate, MARCKS in compensated animals 53 h post-UL under conditions which favoured the Ž . activation of protein kinase C. Under identical conditions, the labelling of a 42-49 kDa protein P46 was increased significantly in the bilateral MVNrPH between either 10 h or 53 h and 2 weeks post-UL; there were no significant changes over time in sham controls. These results show that later stages of vestibular compensation are accompanied by changes in the phosphorylation of several likely protein kinase C substrates in the MVNrPH in vitro. q 1997 Elsevier Science B.V.

Surgical techniques and functional evaluation for vestibular lesions in the mouse: unilateral labyrinthectomy (UL) and unilateral vestibular neurectomy (UVN)

Journal of Neurology

Objective Unilateral labyrinthectomy (UL) and unilateral vestibular neurectomy (UVN) are two surgical methods to produce vestibular lesions in the mouse. The objective of this study was to describe the surgical technique of both methods, and compare functional compensation using vestibulo-ocular reflex-based tests. Methods UL and UVN were each performed on groups of seven and ten mice, respectively. Main surgical landmarks were the facial nerve, the external auditory canal and the sternomastoid and digastric muscles. For UL, the sternomastoid muscle was elevated to expose the mastoid, which was drilled to destroy the labyrinth. For UVN, the bulla was drilled opened and a transcochlear approach enabled the identification of the vestibulo-cochlear nerve exiting the brainstem, which was sectioned and the ganglion of Scarpa suctioned. Behaviour and vestibular function were analysed before surgery and at 1, 4, 7 days and at 1 month postlesion using sinusoidal rotation, off-vertical axis ...

BDNF Signaling Promotes Vestibular Compensation by Increasing Neurogenesis and Remodeling the Expression of Potassium-Chloride Cotransporter KCC2 and GABAA Receptor in the Vestibular Nuclei

Journal of Neuroscience

Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABA A receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies.