Effect of Textile Characteristics on the AR-Glass Fabric Efficiency (original) (raw)
Related papers
Geometrical characteristics and efficiency of textile fabrics for reinforcing cement composites
Cement and Concrete Research, 2000
One of the most efficient ways to obtain a high performance cementitious composite is by reinforcement with continuous fibers. Production of such composites can readily be based on the use of textile fabrics, which are impregnated with cement paste or mortar. The present paper discusses the bulk properties and geometrical characteristics of textile fabrics that should be considered in order to predict the performance of cement composites reinforced with fabrics. Geometrical characteristics are the nature of the basic reinforcing unit in the fabric (yarn) and the various geometries by which these yarns are combined together in the fabric (weft insertion warp knitted, short weft warp knitted, and woven fabrics). It was found that the geometry of a given fabric could enhance the bonding and enable one to obtain strain hardening behavior from low modulus yarn fabrics. On the other hand, variations of the geometry in a fabric could drastically reduce the efficiency, resulting in a reduced strengthening effect of the yarns in the fabric relative to single yarns not in a fabric form. The improved bonding in low modulus yarn was found to be mainly the result of the special shape of the yarn induced by the fabric. Therefore, in cement composites, the fabrics cannot be viewed simply as a means for holding together continuous yarns so that they can be readily placed in the matrix.
Composite materials based on e-glass woven textile structures as reinforcement
2018
Textile composites are materials composed of two basic elements, one which is called a matrix or basic material, which is a continuous phase and the other element or component i.e. reinforcement (textile preforms), often referred as dispersed phase. Textile preforms are diff erent textile structures made by using traditional textile processes such as weaving, knitting, braiding, stitching, etc. Textile preforms not only play a key role in the transformation of fi ber properties into complex composite performance, but also aff ect the easy or diffi cult infi ltration of matrix and consolidation. In this paper three diff erent types of two dimensional E-glass woven structures as reinforcement for composite materials are discussed. The tensile strength and elongation of E-glass fabrics in the longitudinal and transverse directions was experimentally determined according to the standard ASTM D 5035. Characterization of the structure of woven textile materials i.e. the way of interlacing...
Mechanical Properties of Glass Fiber Composites Reinforced by Textile Fabric
Vide. Tehnoloģija. Resursi, 2015
Interest to structural application of textile reinforced polymer matrix composite materials (CM) is growing during last years. In different branches of machine building, aerospace, automotive and others industries we can find structural elements preferably be produced using such reinforcement. At the same time, such materials are exhibiting elastic and strength properties scatter. Present work is devoted to structural modeling of the composite material with textile (knitted) reinforcement having the goal to predict such materials strength and behavior under applied mechanical loads. In the framework of the present investigation, we observe yarn penetrated by a resin in a composite as a reinforcing "macro" fiber. Such "macro" fiber mechanical properties were measured experimentally, for this purpose was produced and was tested by tension until fracture fiber samples, having different length. Then was elaborated and was realized structural strength probabilistic model. In the textile geometry, was picked out repeating structural element-polymer matrix volume with two curved "macro" fiber's chunks inside it. Complete composite material volume is possible to represent as a set of repeating structural elements. External loads application leads to disperse structural elements failure. Neighboring to ruptured elements are overloaded leading to higher probability to fail for them. Using FEM was modeled stress state in "macro" fibers inside CM. Then, was numerically obtained stress distribution in composite material, having different number of broken loops. Probabilities of different numbers of failed elements were calculated. Strength probability function, based on Weibull approach was obtained. CM samples were tested under tension and obtained results were compared with numerical modeling as well as were analyzed.
Fabric structure and its reinforcing efficiency in textile reinforced cement composites
Composites Part A: Applied Science and Manufacturing, 2003
In polymer matrices reinforced with fabrics, the effectiveness of the reinforcement is reduced when the yarns do not maintain a straight geometry. In cement composites, this concept may not be adequate since the nature of the interaction between the cement matrix and the fabric and its individual yarns is more complex, as concluded from pullout tests. The present paper discusses the bulk properties and geometrical characteristics of textile fabrics that need to be considered in order to predict the performance of cement composites reinforced with textile fabrics. It was found that the geometry of a given fabric could enhance the bonding and enable one to obtain strain hardening behavior from low modulus yarn fabrics, due to the special shape of the yarn induced by the fabric. On the other hand, variations of the geometry in a fabric could drastically reduce the efficiency, resulting in a lower strengthening effect of the yarns in the fabric, relative to single yarns not in a fabric form. Therefore, in cement composites the fabrics cannot be viewed simply as a means for holding together continuous yarns to be readily placed in the matrix, as is the case in composites with polymer matrix.
Materials, 2022
In general, 20–25% of the original fibre weight is considered waste in the production of high-quality textiles for the construction sector. A market analysis has shown that in the Republic of Croatia alone, up to 327 tonnes of this waste is produced annually, which is enough to reinforce 50 to 150 thousand m3 of cementitious composites. This preliminary study aims to evaluate the contribution of glass, basalt and carbon fibres generated as waste in the local production of high-performance technical textiles, to the fresh and hardened properties of fibre reinforced mortars. In order to investigate the influence of fibres, three types of fibres in two different lengths (5 and 10 mm) were used, while the amount of fibres was constant. The obtained results show that due to the fibre presence, workability is reduced regardless of the type and length of the fibre. The tested fibres have a negligible effect on compressive strength, but the use of basalt and carbon fibres increases the tens...
Low velocity flexural impact behavior of AR glass fabric reinforced cement composites
2009
Fabric–cement composites developed using the pultrusion production process have demonstrated impressive tensile and flexural properties. For instance fabric reinforced composites with bonded Alkali Resistant (AR) glass fabrics exhibit strain-hardening behavior, tensile strength in the range of 20–25MPa, and strain capacity of the order of 2–5% under static conditions.
Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites
Composites Part B: Engineering, 2015
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress-strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabricreinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.
Journal of Composite Materials, 2019
The mechanical performance of a silica-based mineral nano-coating applied to alkali-resistant glass textile-reinforced composite materials aimed at structural strengthening is investigated experimentally. The silica nano-film is directly applied to the alkali-resistant glass fabric by sol-gel deposition. Two lime mortars are adopted as embedding matrix, which differ by the ultimate compressive strength and elongation. Uni-axial tensile tests of prismatic coupons are carried out according to the ICC AC434 guidelines. Remarkable strength and ductility enhancements could be observed in the silica-coated group, as compared to the uncoated group, for both mortar types. Digital image correlation, electron scanning and optical microscopy provide evidence of improved interphase strength. X-ray diffraction of the anhydrous mortars brings out the role of the mineralogical composition of the embedding media on the overall bonding properties of the composites. Consideration of design limits and energy dissipation capabilities reveals the crucial role of matrix ductility in bringing the contribution of interphase enhancement to full effect. We conclude that best performance requires optimizing the pairing between fabric-to-matrix adhesion and matrix ductility.
Flexural Behavior of Hybrid PVA Fiber and AR-Glass Textile Reinforced Geopolymer Composites
Fibers, 2018
Textile reinforced mortar or concrete, a thin cementitious composite reinforced by non-corrosive polymer textile fabric, was developed and has been researched for its role on repair and strengthening of reinforced concrete (RC) structures. Due to embedment of polymeric textile fabric inside the cementitious matrix, many researchers argued the superiority of this technology than the externally bonded fiber reinforced polymer (FRP) sheet in RC in terms of prevention of debonding of FRP and durability in fire. However, due to use of cement rich matrix the existing development of textile reinforced concrete (TRC) need to be more environmental friendly by replacing cement based binder with geopolymeric binder. This paper presents a first study on the flexural behavior of alkali resistant glass fiber textile reinforced geopolymer (TRG). In this study, two types of geopolymer binder is considered. One is fly ash based heat cured geopolymer and the other is fly ash/slag blended ambient air ...
Composite materials have a wide range of applications in structural components because of their high strength-to-weight and stiffness-to-weight ratios. However, the most crucial and common life-restricting crack growth mode in laminated composites i.e. delamination is of great concern. Air jet texturing was selected to provide a small amount of bulk to the glass yarn. The purpose was to provide more surface contact between the fibres and resin and also to increase the adhesion between the neighbouring layers. These were expected to enhance the resistance to delamination in the woven glass composites. The development and characterisation of core-and-effect textured glass yarns was presented in the previous paper. This paper describes the comparison of the mechanical properties of composites produced from air-textured glass yarns and the composites made from locally manufactured carbon fabrics. The tensile, flexure and inter-laminar shear strength (ILSS) were compared and it was observed that although glass fibres are inferior to carbon fibres in terms of mechanical properties however, the flexure strength and ILSS of glass based composites increases after texturing and were found closer to the properties of carbon based composites.