GaMuSo: Graph base Music recommendation in a Social bookmarking service. (original) (raw)

Web-collaborative filtering: recommending music by crawling the Web

COMPUTER NETWORKSTHE INTERNATIONAL JOURNAL OF COMPUTER AND TELECOMMUNICATIONS NETWORKING, 2000

We show that it is possible to collect data that is useful for collaborative filtering (CF) using an autonomous Web spider. In CF, entities are recommended to a new user based on the stated preferences of other, similar users. We describe a CF spider that collects from the Web lists of semantically related entities. These lists can then be used by existing CF algorithms by encoding them as "pseudo-users". Importantly, the spider can collect useful data without pre-programmed knowledge about the format of particular pages or particular sites. Instead, the CF spider uses commercial Web-search engines to find pages likely to contain lists in the domain of interest, and then applies previously-proposed heuristics to extract lists from these pages. We show that data collected by this spider is nearly as effective for CF as data collected from real users, and more effective than data collected by two plausible hand-programmed spiders. In some cases, autonomously spidered data can also be combined with actual user data to improve performance.

USING ARTIST SIMILARITY TO PROPAGATE SEMANTIC INFORMATION

2009

Tags are useful text-based labels that encode semantic information about music (instrumentation, genres, emotions, geographic origins). While there are a number of ways to collect and generate tags, there is generally a data sparsity problem in which very few songs and artists have been accurately annotated with a sufficiently large set of relevant tags. We explore the idea of tag propagation to help alleviate the data sparsity problem. Tag propagation, originally proposed by Sordo et al., involves annotating a novel artist with tags that have been frequently associated with other similar artists. In this paper, we explore four approaches for computing artists similarity based on different sources of music information (user preference data, social tags, web documents, and audio content). We compare these approaches in terms of their ability to accurately propagate three different types of tags (genres, acoustic descriptors, social tags). We find that the approach based on collaborative filtering performs best. This is somewhat surprising considering that it is the only approach that is not explicitly based on notions of semantic similarity. We also find that tag propagation based on content-based music analysis results in relatively poor performance.

Music Discovery with Social Networks

Current music recommender systems rely on techniques like collaborative filtering on user-provided information in order to generate relevant recommendations based upon users' music collections or listening habits. In this paper, we examine whether better recommendations can be obtained by taking into account the music preferences of the user's social contacts. We assume that music is naturally diffused through the social network of its listeners, and that we can propagate automatic recommendations in the same way through the network. In order to test this statement, we developed a music recommender application called Starnet on a Social Networking Service. It generated recommendations based either on positive ratings of friends (social recommendations), positive ratings of others in the network (nonsocial recommendations), or not based on ratings (random recommendations). The user responses to each type of recommendation indicate that social recommendations are better than non-social recommendations, which are in turn better than random recommendations. Likewise, the discovery of novel and relevant music is more likely via social recommendations than non-social. Social shuffle recommendations enable people to discover music through a serendipitous process powered by human relationships and tastes, exploiting the user's social network to share cultural experiences.

Social Tags and Music Information Retrieval

2008

Social tags are free text labels that are applied to items such as artists, albums and songs. Captured in these tags is a great deal of information that is highly relevant to Music Information Retrieval (MIR) researchers including information about genre, mood, instrumentation, and quality. Unfortunately there is also a great deal of irrelevant information and noise in the tags. Imperfect as they may be, social tags are a source of human-generated contextual knowledge about music that may become an essential part of the solution to many MIR problems. In this article, we describe the state of the art in commercial and research social tagging systems for music. We describe how tags are collected and used in current systems. We explore some of the issues that are encountered when using tags, and we suggest possible areas of exploration for future research.

Tag recommendations in social bookmarking systems

Ai Communications, 2008

Collaborative tagging systems allow users to assign keywords-so called "tags"-to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied.

MusicBox: Personalized Music Recommendation Based on Cubic Analysis of Social Tags

IEEE Transactions on Audio, Speech, and Language Processing, 2010

Social tagging is becoming increasingly popular in music information retrieval (MIR). It allows users to tag music items like songs, albums, or artists. Social tags are valuable to MIR, because they comprise a multifaced source of information about genre, style, mood, users' opinion, or instrumentation. In this paper, we examine the problem of personalized music recommendation based on social tags. We propose the modeling of social tagging data with 3-order tensors, which capture cubic (3way) correlations between users-tags-music items. The discovery of latent structure in this model is performed with the Higher Order Singular Value Decomposition (HOSVD), which helps to provide accurate and personalized recommendations, i.e., adapted to the particular users' preferences. To address the sparsity that incurs in social tagging data and further improve the quality of recommendation, we propose to enhance the model with a tag-propagation scheme that uses similarity values computed between the music items based on audio features. As a result, the proposed model effectively combines both information about social tags and audio features. The performance of the proposed method is examined experimentally with real data from Last.fm. Our results indicate the superiority of the proposed approach compared to existing methods that suppress the cubic relationships that are inherent in social tagging data. Additionally, our results suggest that the combination of social tagging data with audio features is preferable than the sole use of the former.

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Finding the Hidden Gems: Recommending Untagged Music

2012

We have developed a novel hybrid representation for Music Information Retrieval. Our representation is built by incorporating audio content into the tag space in a tag-track matrix, and then learning hybrid concepts using latent semantic analysis. We apply this representation to the task of music recommendation, using similarity-based retrieval from a query music track. We also develop a new approach to evaluating music recommender systems, which is based upon the relationship of users liking tracks. We are interested in measuring the recommendation quality, and the rate at which cold-start tracks are recommended. Our hybrid representation is able to outperform a tag-only representation, in terms of both recommendation quality and the rate that cold-start tracks are included as recommendations. 1

Social Tagging and Music Information Retrieval

Journal of New Music Research, 2008

Social tags are free text labels that are applied to items such as artists, albums and songs. Captured in these tags is a great deal of information that is highly relevant to Music Information Retrieval (MIR) researchers including information about genre, mood, instrumentation, and quality. Unfortunately there is also a great deal of irrelevant information and noise in the tags. Imperfect as they may be, social tags are a source of human-generated contextual knowledge about music that may become an essential part of the solution to many MIR problems. In this article, we describe the state of the art in commercial and research social tagging systems for music. We describe how tags are collected and used in current systems. We explore some of the issues that are encountered when using tags, and we suggest possible areas of exploration for future research.