Performance evaluation of optimal photovoltaic-electrolyzer system with the purpose of maximum Hydrogen storage (original) (raw)
Related papers
Hydrogen Generation Optimization in a Hybrid Photovoltaic-Electrolyzer Using Intelligent Techniques
ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, 2012
Hydrogen is a flexible energy carrier and storage medium and can be generated by electrolysis of water. In this research, hydrogen generation is maximized by optimizing the optimal sizing and operating condition of an electrolyzer directly connected to a PV module. The method presented here is based on Particle swarm optimization algorithm (PSO). The hydrogen, in this study, was produced using a proton exchange membrane (PEM) electrolyzer. The required power was supplied by a photovoltaic module rated at 80 watt. In order to optimize Hydrogen generation, the cell number of the electrolyser and its activity must be 9 and 3, respectively. As a result, it is possible to closely match the electrolyzer polarization curve to the curve connecting PV system's maximum power points at different irradiation levels.
Optimization of PV-Hydrogen Electrolyzes System
International Conference on Aerospace Sciences and Aviation Technology
In this work, an electrolyze system is considered to produce Hydrogen (H 2) using photovoltaic (PV) panels. The system was experimentally installed and tested under the weather conditions of Cairo. Many PV modules with different specifications of current and voltage were tested for individual loads. One of PV modules that have the maximum current with minimum voltage can produce the highest amount of Hydrogen. In addition, the parameters of (KOH) concentration in water and the apart-distance between the electrodes were studied. The apart-distance of 5 cm between the electrodes was found as optimized distance that produces more H 2 quantity. Moreover, a H 2-cell of 20×15×13 cm 3 has higher H 2 production than the size of 6×6×24 cm 3 , 24×6×24 cm 3 and 24×24×24 cm 3 cells. It is obtained that the optimal system that considers the above efficient conditions must have a PV module with high current and small voltage.
PV-Electrolyzer Plant: Models and Optimization Procedure
Journal of Solar Energy Engineering-transactions of The Asme, 2010
The work focused on the analysis of the connection between a photovoltaic (PV) plant and an electrolyzer for hydrogen production. On the basis of PV-plant and electrolyzer experimental data, the effectiveness of the models adopted in the simulation program has been verified in order to choose the best model and, eventually, modify some parameters. By running the simulations, the procedure to optimize the PV-plant and the electrolyzer combination has been established. In fact, the simulation results might be considered to size an electrolyzer as small as possible, which is able to exploit up to the maximum power actually produced by the PV-plant during a working year. This criterion allows minimizing the overall plant costs. Furthermore, the possibility of deleting the maximum power point tracker and the dc/dc converter has been analyzed. On the basis of the obtained results, this opportunity is preferable to avoid the energy losses in the power control system; and it is convenient even from an economic point of view, considering that the electronic device costs are comparable with the PV-plant ones.
Energies, 2020
In this study, the electrical, electrochemical and thermodynamic performance of a PV/T electrolyzer system was investigated, and the experimental results were verified with a numerical model. The annual amounts of electrical and thermal energy from the PV/T electrolyzer system were calculated as 556.8 kWh and 1912 kWh, respectively. In addition, the hydrogen production performance for the PV/T electrolyzer was compared with that of a PV electrolyzer system. The amount of hydrogen was calculated as 3.96 kg annually for the PV system, while this value was calculated as 4.49 kg for the PV/T system. Furthermore, the amount of hydrogen production was calculated as 4.59 kg for a 65 °C operation temperature. The electrical, thermal and total energy efficiencies of the PV/T system, which were obtained hourly on a daily basis, were calculated and varied between 12–13.8%, 36.1–45.2% and 49.1–58.4%, respectively. The hourly exergy analyses were also carried out on a daily basis and the results...
Evolutionary optimization approaches for direct coupling photovoltaic-electrolyzer systems
2015 International Conference on Industrial Engineering and Operations Management (IEOM), 2015
Hydrogen is an important storage medium and can be produced by the water electrolysis. In this research, energy transfer loss between a photovoltaic (PV) unit and electrolyzer is minimized by optimizing the size and operating condition of an electrolyzer directly connected to a PV module. In directly coupled photovoltaic-electrolyzer (PV/EL) systems, there is a mismatch between output PV's maximum power point characteristic and input PEM electrolyzer's characteristic. With proper sizing optimization methods, it is possible to directly couple photovoltaic-electrolyzer systems. The evolutionary optimization algorithms like genetic algorithm (GA), particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) are ideal for handling this kind of problems due to nonlinear behavior of the system during a year. However, each algorithm has its own advantages and disadvantages. In this paper a PV/EL system is simulated and then comparisons among the three evolutionary algorithms are presented for optimization of the system; in terms of processing time, convergence speed, and quality of the results. Based on the comparative analysis, the performance of the algorithms differs in various aspects which make them more or less best suited for such a kind of problem.
Journal of Modern Power Systems and Clean Energy, 2017
The rising demand for high-density power storage systems such as hydrogen, combined with renewable power production systems, has led to the design of optimal power production and storage systems. In this study, a wind and photovoltaic (PV) hybrid electrolyzer system, which maximizes the hydrogen production for a diurnal operation of the system, is designed and simulated. The operation of the system is optimized using imperialist competitive algorithm (ICA). The objective of this optimization is to combine the PV array and wind turbine (WT) in a way that, for minimized average excess power generation, maximum hydrogen would be produced. Actual meteorological data of Miami is used for simulations. A framework of the advanced alkaline electrolyzer with the detailed electrochemical model is used. This optimal system comprises a PV module with a power of 7.9 kW and a WT module with a power of 11 kW. The rate of hydrogen production is 0.0192 mol/s; an average Faraday efficiency of 86.9 percent. The electrolyzer works with 53.7 percent of its nominal power. The availability of the wind for longer periods of time reflects the greater contribution of WT in comparison with PV towards the overall throughput of the system.
Sustainability, 2016
A greenhouse containing an integrated system of photovoltaic panels, a water electrolyzer, fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen, feeding a self-sufficient, geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems, the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer, analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result, a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value, therefore assisting in further studies to better understand these devices and their associated technologies.
Directly Coupled Photovoltaic-Electrolyzer System Optimization Using a Novel ICA Methodology
Hydrogen is considered to be the fuel of the future. It is a cleaner alternative to the fossil fuels we consume every day. Of all the different hydrogen production pathways that exist, producing the gas by utilizing the power generated by renewable energy sources has been a topic of interest for many researchers across the world. The following work focuses on minimizing the energy loss by optimizing the size and the operating conditions of an electrolyzer directly connected to a photovoltaic (PV) module at different irradiance. The hydrogen, in the proposed system, is produced using a proton exchange membrane (PEM) electrolyzer. A nonlinear method is considered, because of the complexity of the system and the variation in maximum power points (MPP) of the PV module throughout the year. A generic model has been also developed to determine the performance of photovoltaic-electrolyzer (PV/EL) system. Additionally, a whole year weather data set is employed to estimate annual electricity generation, I-V curves and MPPs of the PV module.
Optimization of solar powered hydrogen production using photovoltaic electrolysis devices
International Journal of Hydrogen Energy, 2008
Hydrogen production a b s t r a c t Hydrogen fuel for fuel cell vehicles can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In the past, this renewable means of hydrogen production has suffered from low efficiency (2-6%), which increased the area of the PV array required and therefore, the cost of generating hydrogen. In this research, the efficiency of the PV-electrolysis system was optimized by matching the voltage and maximum power output of the photovoltaics to the operating voltage of proton exchange membrane (PEM) electrolyzers. The optimization process increased the hydrogen generation efficiency to 12% for a solar powered PV-PEM electrolyzer that could supply enough hydrogen to operate a fuel cell vehicle.
Photovoltaic Hydrogen Production with Commercial Alkaline Electrolysers
2010
Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zeroemission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm 3 /h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device.