Single-Exclusion Number and the Stopping Redundancy of MDS Codes (original) (raw)
We define the (n,t)-single-exclusion number, S(n,t) as the smallest number of t-subsets of an n-set, such that for each i-subset of the n-set, i=1,...,t+1, there exists a t-subset that contains all but one element of the i-subset. New upper bounds on the single-exclusion number are obtained via probabilistic methods, recurrent inequalities, as well as explicit constructions. The new bounds are used to better understand the stopping redundancy of MDS codes. In particular, it is shown that for [n,k=n-d+1,d] MDS codes, as n goes to infinity, the stopping redundancy is asymptotic to S(n,d-2), if d=o(\sqrt{n}), or if k=o(\sqrt{n}) and k goes to infinity, thus giving partial confirmation of the Schwartz-Vardy conjecture in the asymptotic sense.