Initial saccades predict manual recognition choices in the monkey (original) (raw)
Related papers
The Responses of Visual Neurons in the Frontal Eye Field Are Biased for Saccades
Journal of Neuroscience, 2009
Previous research suggests that visually responsive neurons in the frontal eye field (FEF) respond to visual targets even when they are not the goal of a saccadic eye movement. These results raise the possibility that these neurons respond to visual targets independent of the effector that is to be used to acquire the target locations. In the present study, we examined whether a plan to execute a saccade or a reach to a visual target influenced the response to and the representation of targets in the frontal eye field (FEF). We recorded single unit responses to the onset of the target, during the delay period, and around the time of the movement, on interleaved saccade and reach trials of a delayed-response task. We found that the responses of roughly equal percentages of visual, visuomovement, and movement neurons (50%, 58%, and 58%, respectively) were greater on saccade trials than on reach trials in at least one interval of the delayed-response task. Converse biases, in favor of reaches, were much less frequent (13%, 10%, and 19%, in visual, visuomovement, and movement neurons respectively). Thus, although visual neurons may not be directly involved in triggering saccadic eye movements, they are nonetheless highly saccade-biased, with percentages comparable to neurons that are directly involved in triggering saccadic eye movements.
Primate frontal eye fields. I. Single neurons discharging before saccades
Journal of neurophysiology, 1985
We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual stimuli whether or not the monkey made saccades. Movement activity preceded purposive saccades, even those made without visual targets. Anticipatory activity preceded even the cue to make a saccade if the monkey could reliably predict what saccade he had to make. These three different activities were found in different presaccadic cells in different proportions. Forty percent of presaccadic cells had visual activity (visual cells) but no movement activity. For about half of the visual cells the response was enhanced if the monkey made saccades to the receptive-field stimulus, but there was no discharge before similar saccades made wi...
Frontal Eye Field Contributions to Rapid Corrective Saccades
Visually guided movements can be inaccurate, especially if unexpected events occur while the movement is programmed. Often errors of gaze are corrected before external feedback can be processed. Evidence is presented from macaque monkey frontal eye field (FEF), a cortical area that selects visual targets, allocates attention, and programs saccadic eye movements, for a neural mechanism that can correct saccade errors before visual afferent or performance monitoring signals can register the error. Macaques performed visual search for a color singleton that unpredictably changed position in a circular array as in classic double-step experiments. Consequently, some saccades were directed in error to the original target location. These were followed frequently by unrewarded, corrective saccades to the final target location. We previously showed that visually responsive neurons represent the new target location even if gaze shifted errantly to the original target location. Now we show that the latency of corrective saccades is predicted by the timing of movement-related activity in the FEF. Preceding rapid corrective saccades, the movement-related activity of all neurons began before explicit error signals arise in the medial frontal cortex. The movement-related activity of many neurons began before visual feedback of the error was registered and that of a few neurons began before the error saccade was completed. Thus movement-related activity leading to rapid corrective saccades can be guided by an internal representation of the environment updated with a forward model of the error.
Vision Research, 2006
Information about upcoming saccadic eye movements is used to orient visuo-spatial attention across the visual Weld. DiVerent eye movement signals (intended or actual) could be used according to the intentionality of the saccade in preparation (Reactive or Volitional), and can be dissociated by saccadic adaptation. Gap 0 and overlap paradigms were contrasted to elicit the two saccade populations with diVerent latencies and an asymmetric transfer of saccadic adaptation. Preparation of both saccade types caused a concomitant shift in the attentional focus (indexed by relative perceptual performance) to the actual, not intended, eye position. The attentional shift emerged progressively, earlier for V-saccades but reaching a maximal level around saccade onset for both saccade types. These results suggest that information about actual eye movements mediates the pre-saccadic shift of attention.
Role of Supplementary Eye Field in Saccade Initiation: Executive, Not Direct, Control
Journal of Neurophysiology, 2010
Isoda, Masaki and Jun Tanji. Cellular activity in the supplementary eye field during sequential performance of multiple saccades. J Neurophysiol 88: 3541-3545, 2002; 10.1152/jn.00299.2002. To investigate how single neurons in the supplementary eye field (SEF) participate in sequential performance of multiple saccades, we analyzed presaccadic activity while monkeys were performing three saccades in six different orders from memory. The saccades in each sequence were separated by a fixation period and initiated from the same fixation point with intervening return saccades. We found that the majority of the presaccadic activity of the SEF neurons differed significantly depending on the numerical position of saccades in each sequence (rank order). This rank-order selectivity was found in parallel with the selectivity for the sequence of three saccades. Our data suggest a role for SEF neurons in the coding of temporally ordered saccadic eye movements.
Journal of neurophysiology, 2000
The aim of this study was to determine whether neuronal activity in the macaque supplementary eye field (SEF) is influenced by the rule used for saccadic target selection. Two monkeys were trained to perform a variant of the memory-guided saccade task in which any of four visible dots (rightward, upward, leftward, and downward) could be the target. On each trial, the cue identifying the target was either a spot flashed in superimposition on the target (spatial condition) or a foveally presented digitized image associated with the target (pattern condition). Trials conforming to the two conditions were interleaved randomly. On recording from 439 SEF neurons, we found that two aspects of neuronal activity were influenced by the nature of the cue. 1) Activity reflecting the direction of the impending response developed more rapidly following spatial than following pattern cues. 2) Activity throughout the delay period tended to be higher following pattern than following spatial cues. We...
Behavioral properties of saccades generated as a choice response
Experimental Brain Research, 2008
The behavior characterizing choice response decision-making was studied in monkeys to provide background information for ongoing neurophysiological studies of the neural mechanisms underlying saccadic choice decisions. Animals were trained to associate a speciWc color from a set of colored visual stimuli with a speciWc spatial location. The visual stimuli (colored disks) appeared brieXy at equal eccentricity from a central Wxation position and then were masked by gray disks. The correct target association was subsequently cued by the appearance of a colored stimulus at the Wxation point. The animal indicated its choice by saccading to the remembered location of the eccentric stimulus, which had matched the color of the cue. The number of alternative associations (NA) varied from 1 to 4 and remained Wxed within a block of trials. After the training period, performance (percent correct responses) declined modestly as NA increased (on average 96, 93 or 84% correct for 1, 2 or 4 NA, respectively). Response latency increased logarithmically as a function of NA, thus obeying Hick's law. The spatial extent of the learned association between color and location was investigated by rotating the array of colored stimuli that had remained Wxed during the learning phase to various diVerent angles. Error rates in choice saccades increased gradually as a function of the amount of rotation. The learned association biased the direction of the saccadic response toward the quadrant associated with the cue, but saccade direction was always toward one of the actual visual stimuli. This suggests that the learned associations between stimuli and responses were not spatially exact, but instead the association between color and location was distributed with declining strength from the trained locations. These results demonstrate that the saccade system in monkeys also displays the characteristic dependence on NA in choice response latencies, while more basic features of the eye movements are invariant from those in other tasks. The Wndings also provide behavioral evidence that spatially distributed regions are established for the sensory-to-motor associations during training which are later utilized for choice decisions.
Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement
Journal of neurophysiology, 2002
When primates reach for an object, they very often direct an eye movement toward the object as well. This pattern of directing both eye and limb movements to the same object appears to be fundamental to eye-hand coordination. We investigated interactions between saccades and reaching movements in a rhesus monkey model system. The amplitude and peak velocity of isolated eye movements are positively correlated with one another. This relationship is called the main sequence. We now report that the main sequence relationship for saccades is changed during coordinated eye and arm movements. In particular, peak eye velocity is approximately 4% faster for the same size saccade when the saccade is accompanied by a coordinated arm movement. Saccade duration is reduced by an equivalent amount. The main sequence relationship is unperturbed when the arm moves simultaneously but in the opposite direction as the eyes, suggesting that eye and arm movements must be tightly coordinated to produce th...