Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain (original) (raw)
Related papers
Dystrophic microglia are a disease associated microglia morphology in the human brain
2020
Microglia activation—typically described in terms of hypertrophic appearance—is a well-established feature of aging. Recent studies have suggested that microglia dystrophy, not activation, may increase the propagation of progressive neurodegenerative diseases such as Alzheimer’s disease (AD). Yet, a clear understanding of cause and consequences of dystrophic microglia is lacking. Although frequently observed in diseased brains, the appearance of dystrophic microglia in the hippocampus of individuals free of cognitive impairment suggests that microglia may be undergoing senescence with age, leading to dystrophy. Therefore, we hypothesized that chronological age could be a significant contributor to the presence of dystrophic microglia. To investigate this relationship, we employed stereological counts of total microglia, hypertrophic, and dystrophic microglia across the decades of the human lifespan. The microglia counts were performed in the frontal cortex gray and white matter and ...
Microglial cell dysregulation in brain aging and neurodegeneration
Frontiers in Aging Neuroscience, 2015
Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of neurodegenerative diseases.
Microglia change from a reactive to an age-like phenotype with the time in culture
2014
Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and ageassociated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function. Brites D (2014) Microglia change from a reactive to an age-like phenotype with the time in culture. Front. Cell. Neurosci. 8:152.
Chronically active: activation of microglial proteolysis in ageing and neurodegeneration
Redox Report, 2005
One of the microglial cell functions is the removal of modified extracellular proteins in the brain. The connection between protein oxidation, proteolysis, and microglial activation is the topic of this review. The effect of various activation agents on microglial cells with regard to changes in substrate uptake, proteolytic capacity and degradation efficiency of different types of oxidized protein materials is reviewed. It is shown that different activation stimuli initiate substrate-specific modulation for uptake and proteolysis, influencing an array of factors including receptor expression, lysosomal pH, and proteasome subunit composition. Age-related alterations in activation and proteolytic capacity in microglial cells are also discussed. In ageing, proteolytic effectiveness is diminished, while microglial cells are chronically activated and lose the oxidative burst ability, possibly supporting a 'vicious circle' of macrophage-induced neurodegeneration.
Proliferating culture of aged microglia for the study of neurodegenerative diseases
Journal of Neuroscience Methods, 2011
Microglial cells' phenotype and function change with aging. Since microglial cell impairments that are relevant for neurodegenerative diseases appear to be unique to aged individuals, it is important to assess function of aged microglia. However, most studies are done with microglia from neonates, mostly due to lack of reliable protocols to obtain microglia from adult animals. Here, we present a conditioned mediadependent culture system that promotes proliferation of adult microglia. We observed that inflammatory activation was increasingly oxidative in microglia from aged animals. Also, whereas phagocytosis of A by microglia from adult animals was more robust than that of microglia from neonates, the induction of phagocytosis by TGF was abolished in aged animals. Our results show the importance of using adult animals cells for the study of neurodegenerative processes or other diseases associated with aging. The proposed culture method is inexpensive and cell yield allows for their assessment by functional bioassays and biochemistry.
eLife, 2020
To date, microglia subsets in the healthy CNS have not been identified. Utilizing autofluorescence (AF) as a discriminating parameter, we identified two novel microglia subsets in both mice and non-human primates, termed autofluorescence-positive (AF+) and negative (AF−). While their proportion remained constant throughout most adult life, the AF signal linearly and specifically increased in AF+ microglia with age and correlated with a commensurate increase in size and complexity of lysosomal storage bodies, as detected by transmission electron microscopy and LAMP1 levels. Post-depletion repopulation kinetics revealed AF− cells as likely precursors of AF+ microglia. At the molecular level, the proteome of AF+ microglia showed overrepresentation of endolysosomal, autophagic, catabolic, and mTOR-related proteins. Mimicking the effect of advanced aging, genetic disruption of lysosomal function accelerated the accumulation of storage bodies in AF+ cells and led to impaired microglia phy...