First Results from ATCA at Millimetre Wavelengths (original) (raw)

High-Resolution Interstellar Spectroscopy and Star Formation [and Discussion]

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981

During the past several years, high spatial and spectral resolution molecular spectroscopy has greatly contributed to our knowledge of the physics, dynamics and chemistry of interstellar molecular clouds and thus has led to a better understanding of the conditions that lead to star formation. According to their physical properties, molecular clouds can be grouped into four different types: (i) the dark clouds, (ii) the molecular clouds associated with H+ regions, (iii) the ‘protostellar’ (or maser) environment, and (iv) the molecular envelopes of late-type stars. The first three types of cloud contain generally active regions of star formation. As typical examples the properties are discussed of individual clouds such as TMC 1 and L 183 for the cold clouds, S 140 and S 106 for the warm dark clouds with embedded infrared source, and Orion A for a region with associated H+ region. In S 140, NH 3 is clumped on a scale of not more than 20", whereas recent observations towards Orion...