Distinct pathogenic genes causing intellectual disability and autism exhibit overlapping effects on neuronal network development (original) (raw)

Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

The American Journal of Human Genetics, 2014

Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.

Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism

Cell, 2013

Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility genes, raising two critical questions: (1) do these genetic loci converge on specific biological processes, and (2) where does the phenotypic specificity of ASD arise, given its genetic overlap with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto coexpression networks representing developmental trajectories and transcriptional profiles representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that implicate distinct biological functions during human cortical development, including early transcriptional regulation and synaptic development. Bioinformatic analyses suggest that translational regulation by FMRP and transcriptional coregulation by common transcription factors connect these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that the patterns of ASD and ID risk genes are distinct, providing a biological framework for further investigating the pathophysiology of ASD.

Autism genes converge on asynchronous development of shared neuron classes

Nature, 2022

Genetic risk for autism spectrum disorders (ASD) is associated with hundreds of genes spanning a wide range of biological functions 1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals 6,7. Here, we leveraged organoid models of the human cerebral cortex to identify cell type-specific developmental abnormalities resulting from haploinsufficiency in three ASD risk genes, SUV420H1 (KMT5B), ARID1B, and CHD8, in multiple cell lines from different donors, using single-cell RNA-seq (scRNA-seq) of over 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations demonstrates asynchronous development of two main cortical neuronal lineages, GABAergic neurons and deep-layer excitatory projection neurons, but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This work uncovers cell typespecific neurodevelopmental abnormalities shared across ASD risk genes that are finely modulated Paulsen et al.

Novel genes for autism implicate both excitatory and inhibitory cell lineages in risk

We present the largest exome sequencing study to date focused on rare variation in autism spectrum disorder (ASD) (n=35,584). Integrating de novo and case-control variation with an enhanced Bayesian framework incorporating evolutionary constraint against mutation, we implicate 99 genes in ASD risk at a false discovery rate (FDR) ≤ 0.1. Of these 99 risk genes, 46 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 50 show higher frequencies in individuals ascertained for ASD, and comparing ASD cases with disruptive mutations in the two groups shows differences in phenotypic presentation. Expressed early in brain development, most of the risk genes have roles in neuronal communication or regulation of gene expression, and 12 fall within recurrent copy number variant loci. In human cortex single-cell gene expression data, expression of the 99 risk genes is also enriched in both excitatory and inhibitory neuronal l...

Genome-wide characterization of genetic and functional dysregulation in autism spectrum disorder

2016

Autism spectrum disorder (ASD) is a range of major neurodevelopmental disabilities with a strong genetic basis. Yet, owing to extensive genetic heterogeneity, multiple modes of inheritance and limited study sizes, sequencing and quantitative genetics approaches have had limited success in characterizing the complex genetics of ASD. Currently, only a small fraction of potentially causal genes -about 65 genes out of an estimated several hundred- are known based on strong genetic evidence. Hence, there is a critical need for complementary approaches to further characterize the genetic basis of ASD, enabling development of better screening and therapeutics. Here, we use a machine-learning approach based on a human brain-specific functional gene interaction network to present a genome-wide prediction of autism-associated genes, including hundreds of candidate genes for which there is minimal or no prior genetic evidence. Our approach is validated in an independent case-control sequencing...

Modeling the functional genomics of autism using human neurons

Molecular Psychiatry, 2011

Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.

Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders

Frontiers in genetics, 2015

The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying gen...

Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories

Cerebral cortex (New York, N.Y. : 1991), 2018

Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early post...

A Neurodevelopmental Perspective for Autism-Associated Gene Function

OBM Neurobiology, 2017

Large-scale genetic sequencing studies have identified a wealth of genes in which mutations are associated with autism spectrum disorder (ASD). Understanding the biological function of these genes sheds light onto the neurodevelopmental basis of ASD. To this end, we defined functional categories representing brain development-(1) Cell Division and Survival, (2) Cell Migration and Differentiation, (3) Neuronal Morphological Elaboration, (4) Development and Regulation of Cellular Excitability, and (5) Synapse Formation and Function-and place 100 high confidence ASD-associated genes yielding at least 50 published PubMed articles into these categories based on keyword searches. We compare the categorization of ASD genes to genes associated with developmental delay (DD) and systematically review the published literature on the function of these genes. We find evidence that ASD-associated genes have important functions that span the neurodevelopmental continuum. Further, examining the temporal expression pattern of these genes using the BrainSpan Atlas of the Developing Human Brain supports their function across development. Thus, our analyses and review of literature on ASD gene function support a model whereby differences in brain development-from very early stages of macroarchitectural patterning to late stages of activity-dependent sculpting of synaptic connectivity-may lead to ASD. It will be important to keep investigating potential points of mechanistic convergence which could explain a common pathophysiological basis of ASD behind this disparate array of genes.