Convergencia y Estabilidad De Los Tipos De Cambio Europeos: Una Aplicación De Exponentes De Lyapunov (original) (raw)

2007, Cuadernos de economía

Abstract

In this paper we applied the dynamic system theory to the measurement of the stability of the European process of convergence. In particular, Lyapunov's exponents are used to verify the influence of political and economic decisions made during the creation of the European Union on the stability (or instability) of exchange rate fluctuation in different European countries. We find evidence of such relationship.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. Abarbanel, H.D.I.; R. Brown y M. B. Kennel (1991), Local Lyapunov exponents computed from observed data. Journal of Nonlinear Science 1: 175-199.
  2. Abhayandar, A.; L.S. Copeland y W. Wong (1997), Uncovering nonlinear structure in real-time stock-market indexes: the S&P 500, the DAX, the Nikkei 225 and the FTSE-100. Journal of Business and Economic Statistics 15: 1-14.
  3. Barnett, W.A.; A.R. Gallant; M.J. Hinich; J.A. Jungeilges; D.T. Kaplan y M.J. Jensen (1995), Robustness of nonlinearity and chaos tests to measurement error, inference method, and sample size. Journal of Economic Behavior and Organization 27: 301-320.
  4. Bask, M. (2002), A positive Lyapunov exponent in Swedish exchange rates? Chaos, Soli- tons and Fractals 14: 1295-1304.
  5. Bask, M. y X. de Luna (2002), Characterizing the degree of stability of nonlinear dyna- mic models. Studies in Nonlinear Dynamics & Econometrics 6, 1: art. 3.
  6. Berndt, E.K.; G.H. Hall; R.E. Hall y J.A. Hausman (1974), Estimation and inference in nonlinear structural models. Annals of Economics and Social Measure- ment 3/4: 653-665.
  7. Besné, R.; J.R. Canedo; B. Pérez (1998), La Unión Europea: historia, instituciones y sistema jurídico. Bilbao, Universidad de Deusto.
  8. Brock, W.A. (1986), Distinguishing random and deterministic systems. abridged ver- sion. Journal of Economic Theory 40: 168-195.
  9. Casdagli, M. (1989), Nonlinear prediction of chaotic time series. Physica D 35: 335-356.
  10. Casdagli, M. (1992), Chaos and deterministic versus stochastic modelling. Journal of the Royal Statistical Society B 54, 2: 303-328.
  11. Dechert, W.D. y R. Gencay (1992), Lyapunov exponents as a nonparametric diagnostic for stability analysis. Journal of Applied Econometrics 7: S41-S60.
  12. Eckman, J.-P y D. Ruelle (1985), Ergodic theory of chaos and strange attractors. Re- views of Modern Physics 57, 3: 617-656.
  13. Eckman, J.-P. y D. Ruelle (1992), Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56: 185-187.
  14. Ellner, S.; D.W. Nychka y A.R. Gallant (1991), LENNS, a program to estimate the domi- nant Lyapunov exponent of noisy nonlinear system from time series data. Institute of Statistics Mimeo Series #2235, Statistics Department, North Carolina State University, Raleigh, NC 27695-8203.
  15. Gallant, A.R. y H. White (1992), On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural Networks 5: 12-138.
  16. Gencay, R. y W.D. Dechert (1992), An algorithm for the n Lyapunov Exponents of an n dimensional unkown dynamical system. Physica D 59: 142-157.
  17. Gill, P.E.; W. Murray y M.H. Wright (1981), Practical Optimization. London y New York. Academic Press.
  18. Granger, C.W.J. y T. Teräsvirta (1992), Experiments in modeling nonlinear relationships between time series. En Nonlinear modelling and forecasting (Eds. M. Casdagli y S. Eubank). Santa Fe Institute Studies in the Sciences of Com- plexity, Proceedings v. XII. New York. Addison-Wesley: 199-226.
  19. Jungeilges, J.A. (1996), Operational characteristics of White's test. En Nonlinear dyna- mics and economics (Eds. W.A. Barnett, A.P. Kirman y M. Salmon). Cam- bridge. Cambridge University Press: 219-266.
  20. Kuan, C.M.; T. Liu y R. Gencay (1997), Netle 3.01: feedforward neural networks and Lyapunov exponents estimation. Ball State University.
  21. Kuan, C.M. y H. White (1994), Artificial neural networks. an econometric perspective. Econometric Reviews 13: 1-91.
  22. Lyapunov, A.M. (1892), The general problem of the stability of motion. Mathematical Society of Kharkov. PhD. Traducido en International Journal of Control (1992) 55: 131-773.
  23. McCaffrey, D.F.; S. Ellner; A.R. Gallant y D.W. Nychka (1992), Estimating the Lyapu- nov exponent of a chaotic system with nonparametric regression. Journal of the American Statistical Association 87: 682-695.
  24. Nychka, D.; S. Ellner; A.R. Gallant y D. McCaffrey (1992), Finding chaos in noisy sys- tems; Journal of the Royal Statistical Society B. 54, 2: 399-426.
  25. Sano, M. y Y. Sawada (1985), Measurement of the Lyapunov Spectrum from a chaotic time series. Physical Review Letters 55, 10: 1082-1085.
  26. Sato, S.; M. Sano e Y. Sawada (1987), Practical methods of measuring the generalizad dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Progress of Theoretical Physics 77, 1: 1-5.
  27. Serletis, A. (1995), Random walks, breaking trend functions, and the chaotic structure of the velocity of money. Journal of Business and Economic Statistics 13: 453-458.
  28. Shintani, M. y O. Linton (2003), Is there chaos in the world economy? A nonparametric test using consistent standard errors. International Economic Review 44, 1: 331-358.
  29. Shintani, M. y O. Linton (2004), Nonparametric neural networkd estimation of Lyapunov exponents and a direct test of chaos. Journal of Econometrics 120: 1-33.
  30. Sugihara, G. y R.M. May (1990), Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 334: 734-741.
  31. Takens, F. (1986), Detecting strange attractors in turbulence en D.A. Rand y L.-S. Young (eds.): Lecture Notes in Mathematics: Dynamical Systems and Turbulen- ce 89; New York, Springer-Verlag: 366-381.
  32. Tamames, R. (1998), Unión Monetaria y el Euro: la recta final. Madrid, Espasa Calpe.
  33. Wang, H.; G. Chen y J. Lü (2004), Complex dynamical behaviors of daily data series in stock exchange. Physics Letters A 333: 246-255.
  34. White, A. (1989), Some asymptotic results for learning in single hidden-layer feedforward network models. Journal of the American Statistical Association 84, 408: 1003-1013.
  35. Wolf, A.; J.B. Swift; H.L. Swinney y J.A. Vastano (1985), Determining Lyapunov expo- nents from a time series. Physica D 16: 285-317.
  36. Weston, R. y P. Premachandra (2004), A chaotic analysis of the New Zealand exchange rate 1985-2004. NZAE 2004.