Automated deep-neural-network surveillance of cranial images for acute neurologic events (original) (raw)
Related papers
Sensors
Intracranial hemorrhage is a medical emergency that requires urgent diagnosis and immediate treatment to improve patient outcome. Machine learning algorithms can be used to perform medical image classification and assist clinicians in diagnosing radiological scans. In this paper, we apply 3-dimensional convolutional neural networks (3D CNN) to classify computed tomography (CT) brain scans into normal scans (N) and abnormal scans containing subarachnoid hemorrhage (SAH), intraparenchymal hemorrhage (IPH), acute subdural hemorrhage (ASDH) and brain polytrauma hemorrhage (BPH). The dataset used consists of 399 volumetric CT brain images representing approximately 12,000 images from the National Neuroscience Institute, Singapore. We used a 3D CNN to perform both 2-class (normal versus a specific abnormal class) and 4-class classification (between normal, SAH, IPH, ASDH). We apply image thresholding at the image pre-processing step, that improves 3D CNN classification accuracy and perfor...
Sensors
In this paper, we present our system for the RSNA Intracranial Hemorrhage Detection challenge, which is based on the RSNA 2019 Brain CT Hemorrhage dataset. The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN) that takes as input individual CT slices, and a Long Short-Term Memory (LSTM) network that takes as input multiple feature embeddings provided by the CNN. For efficient processing, we consider various feature selection methods to produce a subset of useful CNN features for the LSTM. Furthermore, we reduce the CT slices by a factor of 2×, which enables us to train the model faster. Even if our model is designed to balance speed and accuracy, we report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants. While our computing infrastructure does not allow it, processing CT slices at their original scale is likely to improve p...
Intracranial hemorrhage (ICH) occurs when a blood vessel ruptures in the brain. This leads to significant morbidity and mortality, the likelihood of which is predicated on the size of the bleeding event. X-ray computed tomography (CT) scans allow clinicians and researchers to qualitatively and quantitatively diagnose hemorrhagic stroke, guide interventions and determine inclusion criteria of patients in clinical trials. There is no currently available open source, validated tool to quickly segment hemorrhage. Using an automated pipeline and 2D and 3D deep neural networks, we show that we can quickly and accurately estimate ICH volume with high agreement with timeconsuming manual segmentation. The training and validation datasets include significant heterogeneity in terms of pathology, such as the presence of intraventricular (IVH) or subdural hemorrhages (SDH) as well as variable image acquisition parameters. We show that deep neural networks trained with an appropriate anatomic con...
Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks
IEEE Transactions on Medical Imaging, 2016
Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelled by radiologists but this procedure is laborious, time-consuming, and error prone. In this paper, we propose a novel automatic method to detect CMBs from magnetic resonance (MR) images by exploiting the 3D convolutional neural network (CNN). Compared with previous methods that employed either low-level hand-crafted descriptors or 2D CNNs, our method can take full advantage of spatial contextual information in MR volumes to extract more representative high-level features for CMBs, and hence achieve a much better detection accuracy. To further improve the detection performance while reducing the computational cost, we propose a cascaded framework under 3D CNNs for the task of CMB detection. We first exploit a 3D fully convolutional network (FCN) strategy to retrieve the candidates with high probabilities of being CMBs, and then apply a well-trained 3D CNN discrimination model to distinguish CMBs from hard mimics. Compared with traditional sliding window strategy, the proposed 3D FCN strategy can remove massive redundant computations and dramatically speed up the detection process. We constructed a large dataset with 320 volumetric MR scans and performed extensive experiments to validate the proposed method, which achieved a high sensitivity of 93.16%
European Radiology Experimental, 2023
Background Deep learning (DL) algorithms are playing an increasing role in automatic medical image analysis. Purpose To evaluate the performance of a DL model for the automatic detection of intracranial haemorrhage and its subtypes on non-contrast CT (NCCT) head studies and to compare the effects of various preprocessing and model design implementations. Methods The DL algorithm was trained and externally validated on open-source, multi-centre retrospective data containing radiologist-annotated NCCT head studies. The training dataset was sourced from four research institutions across Canada, the USA and Brazil. The test dataset was sourced from a research centre in India. A convolutional neural network (CNN) was used, with its performance compared against similar models with additional implementations: (1) a recurrent neural network (RNN) attached to the CNN, (2) preprocessed CT imagewindowed inputs and (3) preprocessed CT image-concatenated inputs. The area under the receiver operating characteristic curve (AUC-ROC) and microaveraged precision (mAP) score were used to evaluate and compare model performances. Results The training and test datasets contained 21,744 and 491 NCCT head studies, respectively, with 8,882 (40.8%) and 205 (41.8%) positive for intracranial haemorrhage. Implementation of preprocessing techniques and the CNN-RNN framework increased mAP from 0.77 to 0.93 and increased AUC-ROC [95% confidence intervals] from 0.854 [0.816-0.889] to 0.966 [0.951-0.980] (p-value = 3.91 × 10 −12). Conclusions The deep learning model accurately detected intracranial haemorrhage and improved in performance following specific implementation techniques, demonstrating clinical potential as a decision support tool and an automated system to improve radiologist workflow efficiency.
Deep networks in identifying CT brain hemorrhage
Journal of Intelligent & Fuzzy Systems, 2018
Deep learning algorithms have recently been applied to solving challenging problems in medicine such as medical image classification and analysis. In some areas, those algorithms have outperformed the human medical experts experience in diagnosis. Thus, in this paper we apply three different deep networks to solve the problem of brain hemorrhage identification in CT images. The motivation behind this work is the difficulty that radiologists encounter when diagnosing a hemorrhagic brain CT image, in particularly in the early stages of the brain bleeding. Autoencoder (AE), stacked autoencoder (SAE), and convolutional neural network (CNN) are employed and trained to classify the CT images into hemorrhagic or nonhemorrhagic. Experimentally, it was found that all employed networks performed differently in terms of accuracy, error reached, and training time. However, stacked autoencoder has achieved a higher accuracy and lesser error compared to other used networks.
The Lancet Digital Health, 2020
Background CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types. Methods Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India. Findings 98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0•86 mL (95% CI-5•23 to 6•94) for intraparenchymal haemorrhage, 1•83 mL (-12•01 to 15•66) for extra-axial haemorrhage, 2•09 mL (-9•38 to 13•56) for perilesional oedema, and 0•07 mL (-1•00 to 1•13) for intraventricular haemorrhage. Interpretation We show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.
Current Medical Imaging Formerly Current Medical Imaging Reviews
Background: The need for accurate and timely detection of Intracranial hemorrhage (ICH) is of utmost importance to avoid untoward incidents that may even lead to death. Hence, this presented work leverages the ability of a pretrained deep convolutional neural network (CNN) for the detection of ICH in computed tomography (CT) brain images. Methods: Different frameworks have been analyzed for their effectiveness for the classification of CT brain images into hemorrhage or non-hemorrhage conditions. All these frameworks were investigated on the CQ500 dataset. Furthermore, an exclusive preprocessing pipeline was designed for both normal and ICH CT images. Firstly, a framework involving the pretrained deep CNN, AlexNet, has been exploited for both feature extraction and classification using the transfer learning method. Secondly, a modified AlexNet-Support vector machine (SVM) classifier is explored, and finally, a feature selection method, Principal Component Analysis (PCA), has been in...
Head CT Deep Learning Model for Early Stroke Identification Outperforms Human Experts
2021
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6hrs) acute infarct identification. We developed a deep learning model that detects and delineates early acute infarcts on NCCT, using diffusion MRI as ground truth (3,566 NCCT/MRI training pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans (sensitivity 96% model versus 61–66% experts); infarct volume estimates strongly correlated with those of diffusion MRI (r2 > 0.98).
Traumatic Brain Injury (TBI) could lead to intracranial hemorrhage (ICH), which has now been identified as a major cause of death after trauma if it is not adequately diagnosed and properly treated within the first 24 hours. CT examination is widely preferred for urgent ICH diagnosis, which enables the fast identification and detection of ICH regions. However, the use of it requires the clinical interpretation by experts to identify the subtypes of ICH. Besides, it is unable to provide the details needed to conduct quantitative assessment, such as the volume and thickness of hemorrhagic lesions, which may have prognostic importance to the decision-making on emergency treatment. In this paper, an optimal deep learning framework is proposed to assist the quantitative assessment for ICH diagnosis and the accurate detection of different subtypes of ICH through head CT scan. Firstly, the format of raw input data is converted from 3D DICOM to NIfTI. Secondly, a pre-trained multi-class semantic segmentation model is applied to each slice of CT images, so as to obtain a precise 3D mask of the whole ICH region. Thirdly, a fine-tuned classification neural network is employed to extract the key features from the raw input data and identify the subtypes of ICH. Finally, a quantitative assessment algorithm is adopted to automatically measure both thickness and volume via the 3D shape mask combined with the output probabilities of the classification network. The results of our extensive experiments demonstrate the effectiveness of the proposed framework where the average accuracy of 96.21 percent is achieved for three types of hemorrhage. The capability of our optimal classification model to distinguish between different types of lesion plays a significant role in reducing the false-positive rate in the existing work. Furthermore, the results suggest that our automatic quantitative assessment algorithm is effective in providing clinically relevant quantification in terms of volume and thickness. It is more important than the qualitative assessment conducted through visual inspection to the decision-making on emergency surgical treatment.