Crystal structure of botulinum neurotoxin subtype A3 cell binding domain in complex with GD1a co‐receptor ganglioside (original) (raw)

A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes

Toxins

Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glyc...

Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip

Toxins

Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now "booming field" of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.

Botolinum toxins: their structure, properties, and genetics

2016

Clostridium botulinum is Gram positive, spore-forming anaerobic bacteria, which can produce botulinum neurotoxins (BoNTs). The toxins block the release of neurotransmitter, acetylcholine, at peripheral cholinergic nerve terminal and cause flaccid paralysis of muscle in human and animals, a condition known as botulism. BoNTs are classified into seven different serotypes (designated as BoNT/ A-BoNT/G), in which serotype A, B, E, and F cause botulism in human. BoNTs are comprised of one domain of light chain (L-chain) at N-terminus and two domains of heavy chains (H-chain) at C-terminus. The function of L-chain is to cleave SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins that involve in the exocytosis of neurotransmitter whereas H-chain is responsible for binding of toxin with nerve terminal and translocating of L-chain into cytosol from synaptic vesicle. The BoNTs are usually produced as complexes called progenitor toxin complex (PTC). They bind...

Crystal Structures of Botulinum Neurotoxin Subtypes A4 and A5 Cell Binding Domains in Complex with Receptor Ganglioside

Toxins, 2022

Botulinum neurotoxins (BoNT) cause the potentially fatal neuroparalytic disease botulism that arises due to proteolysis of a SNARE protein. Each BoNT is comprised of three domains: a cell binding domain (HC), a translocation domain (HN), and a catalytic (Zn2+ endopeptidase) domain (LC). The HC is responsible for neuronal specificity by targeting both a protein and ganglioside receptor at the neuromuscular junction. Although highly toxic, some BoNTs are commercially available as therapeutics for the treatment of a range of neuromuscular conditions. Here we present the crystal structures of two BoNT cell binding domains, HC/A4 and HC/A5, in a complex with the oligosaccharide of ganglioside, GD1a and GM1b, respectively. These structures, along with a detailed comparison with the previously reported apo-structures, reveal the conformational changes that occur upon ganglioside binding and the interactions involved.

High‐resolution crystal structures of the botulinum neurotoxin binding domains from subtypes A5 and A6

FEBS Open Bio, 2020

Clostridium botulinum neurotoxins (BoNTs) cause flaccid paralysis through inhibition of acetylcholine release from motor neurons; however, at tiny doses, this property is exploited for use as a therapeutic. Each member of the BoNT family of proteins consists of three distinct domains: a binding domain that targets neuronal cell membranes (H C), a translocation domain (H N), and a catalytic domain (LC). Here we present high-resolution crystal structures of the binding domains of BoNT subtypes /A5 (H C /A5) and /A6 (H C /A6). These structures show that the core fold identified in other subtypes is maintained, but with subtle differences at the expected receptor binding sites.

Botulinum neurotoxins: genetic, structural and mechanistic insights

Nature Reviews Microbiology, 2014

Clostridium is a genus of sporulating and anaerobic Gram-positive, rod-shaped bacteria that includes more than 150 species. These bacteria are widely distributed in the environment and in anaerobic regions of the intestines of several animals, where they are typically found as spores, which are resistant to physical and chemical stresses and can persist for long periods of time until favourable conditions enable germination 1,2 . Under appropriate environmental conditions (such as humidity, nutrients and the absence of oxygen), spores germinate into vegetative cells; conversely, exposure to oxygen, as well as water and nutrient deprivation, trigger sporulation. Several clostridia, including Clostridium difficile, Clostridium perfringens and Clostridium sordelli, are pathogenic, owing to the release of protein toxins, but only a few species are neurotoxigenic. For example, Clostridium tetani produces tetanus neurotoxin, which blocks neurotransmitter release in spinal cord interneurons and causes the spastic paralysis of tetanus 3 . In addition, six phylogenetically distinct clostridia produce more than 40 different botulinum neurotoxins (BoNTs) (BOX 1). BoNTs consist of three primary domains: two of these domains enable binding to nerve terminals and translocation of the toxin into the neuronal cytosol, and the third domain comprises a metalloprotease that inhibits the release of neurotransmitter by peripheral nerve terminals (BOX 2), which causes the flaccid paralysis and autonomic dysfunctions that are typical of botulism 2,4 . The neurospecificity and toxic potency of BoNTs make them the most powerful known toxins, and they are potential bioterrorism weapons 5,6 . By contrast, their absolute neurospecificity has enabled BoNTs to be used as effective therapeutic agents for human diseases that Neurotransmitter An endogenous chemical that transmits signals across a synapse from a neuron to a postsynaptic cell.

High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor-binding domain of botulinum neurotoxin serotype D

2010

Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D_HCR was expressed at a high level (150-200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D_HCR was obtained. The recombinant BoNT/ D_HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 Å . Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit.