Gait Event Detection for Stroke Patients during Robot-Assisted Gait Training (original) (raw)
Related papers
Sensors, 2019
Technologies such as robot-assisted gait trainers or functional electrical stimulation can improve the rehabilitation process of people affected with gait disorders due to stroke or other neurological defects. By combining both technologies, the potential disadvantages of each technology could be compensated and simultaneously, therapy effects could be improved. Thus, an algorithm was designed that aims to detect the gait cycle of a robot-assisted gait trainer. Based on movement data recorded with inertial measurement units, gait events can be detected. These events can further be used to trigger functional electrical stimulation. This novel setup offers the possibility of equipping a broad range of potential robot-assisted gait trainers with functional electrical stimulation. The aim of this paper in particular was to test the feasibility of a system using inertial measurement units for gait event detection during robot-assisted gait training. Thus, a 39-year-old healthy male adult...
Journal of physical therapy science, 2014
The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.
Clinical Efficacy of a New Robot-assisted Gait Training System for Acute Stroke Patients
Journal of Medical and Biological Engineering
Purpose Robot-assisted gait rehabilitation has been proposed as a plausible supplementary rehabilitation strategy in stroke rehabilitation in the last decade. However, its exact benefit over traditional rehabilitation remain sparse and unclear. It is therefore the purpose of the current study to comparatively investigate the clinical benefits of the additional robot-assisted training in acute stroke patients compared to standard hospital rehabilitation alone. Methods Ninety acute stroke patients ( 0.1) between the groups were found. However, the robotic training group had more participants demonstrating larger BBS points of improvement as well as greater Brunnstrom stage of improvement, when compared to the control group. No significant within and between group statistical differences (p > 0.3) were found for Pittsburgh Sleep Quality Index and Taiwanese Depression Questionnaire. Conclusion The addition of robotic gait training on top of standard hospital neurorehabilitation for a...
Effects of robot-assisted gait training in stroke patients
Acta Fisiátrica, 2015
Stroke patients present significant gait deficits due to the complexity of their disabilities. Robot-assisted gait training (RGT), in addition to reducing the therapist's physical overload, ensures a simpler and safer environment for gait training, in which symmetrical and constant movement patterns of the lower limbs can be developed at higher speeds, and allows for a longer therapy session. Despite an increasing use of this equipment in rehabilitation, there is a lack of knowledge about the effects that can be promoted in paretic gait, as well as the training protocols applied to achieve them. Objective: Thus, this study aimed to assess the current evidence for efficacy of RGT in post-stroke individuals, with emphasis on gait performance. Method: For this, a survey of studies published in the last 10 years (2003-2013) with the terms "stroke" and "gait" and "robotics" was conducted in the PubMed, MedLine and LILACS databases. Results: Five studies were selected that met the inclusion criteria, including using the Lokomat robotic device (Hocoma, Volketswil) for gait training in post-stroke patients. The results obtained for each study considered the gains in linear gait parameters (speed and distance traveled) promoted by robotic therapy compared to conventional therapy. Conclusion: The data suggest that the use of robotic therapy in gait rehabilitation of post-stroke patients does not produce any more gains than those obtained with conventional therapy.
International Journal of Rehabilitation Research, 2015
Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72 ± 6 years), with hemiparesis (< 6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment.
In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.
Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72 ± 6 years), with hemiparesis (< 6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment.
Towards more effective robotic gait training for stroke rehabilitation: a review
2012
Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice.
An observational report of intensive robotic and manual gait training in sub-acute stroke
Journal of neuroengineering and rehabilitation, 2012
The use of automated electromechanical devices for gait training in neurological patients is increasing, yet the functional outcomes of well-defined training programs using these devices and the characteristics of patients that would most benefit are seldom reported in the literature. In an observational study of functional outcomes, we aimed to provide a benchmark for expected change in gait function in early stroke patients, from an intensive inpatient rehabilitation program including both robotic and manual gait training.
Brain Sciences, 2020
Robot-assisted gait training (RAGT) systems offer the advantages of standard rehabilitation and provide precise and quantifiable control of therapy. We examined the clinical outcome of RAGT and analyzed the correlations between gait analysis data and event-related desynchronization (ERD) and event-related synchronization (ERS) in patients with chronic stroke. We applied the Berg balance scale (BBS) and analyzed gait parameters and the ERD and ERS of self-paced voluntary leg movements performed by patients with chronic stroke before and after undergoing RAGT. A significant change was observed in BBS (p = 0.011). We also showed preliminary outcomes of changes in gait cycle duration (p = 0.015) and in ipsilesional ERS in the low-beta (p = 0.033) and high-beta (p = 0.034) frequency bands before and after RAGT. In addition, correlations were observed between BBS and ipsilesional ERS in the alpha and low-beta bands (r = −0.52, p = 0.039; r = −0.52, p = 0.040). The study demonstrated that ...