Injection of the protein kinase C inhibitor Ro31-8220 into the nucleus accumbens attenuates the acute response to amphetamine: tissue and behavioral studies (original) (raw)
Related papers
Neuroscience Letters, 2009
Acute administration of the psychostimulant amphetamine increases extracellular levels of dopamine (DA) by reversing the DA transporter on ascending midbrain DA neurons. In vitro studies using striatal synaptosomal, slice and nucleus accumbens (NAcc) tissue preparations have implicated protein kinase C (PKC) in this effect. The present study further examined this effect in vivo by assessing the ability of the PKC inhibitor, Ro31-8220 (10 M), to inhibit acute amphetamine-induced DA overflow when applied with this drug to the NAcc via reverse dialysis. Amphetamine was applied at a concentration of 30 M, and the core and shell subregions of the NAcc were assayed separately in freely moving rats. These brain regions play a role in the acute locomotor-activating and motivational effects of amphetamine. Consistent with the findings of previous in vitro experiments, reverse dialysis of Ro31-8220 with amphetamine robustly attenuated the ability of this drug to increase extracellular levels of dopamine in both the core and shell subregions of the NAcc. These results confirm that amphetamine stimulates dopamine overflow via a PKC-dependent mechanism.
Journal of Neuroscience, 2005
Current concepts suggest that nucleus accumbens (NAcb) dopamine mediates several motivated and addictive behaviors. Although the role of protein kinase A (PKA) and dopamine and cyclic adenosine 3Ј,5Ј monophosphate-regulated phosphoprotein 32 kDa in NAcb dopamine receptor throughput has been studied extensively, the contribution of protein kinase C (PKC) to NAcb firing is poorly understood. Here we show that dopamine-mediated enhancement of spike firing in NAcb shell medium spiny neurons was prevented by the PKC inhibitor bisindolylmaleimide but not by the phospholipase C inhibitor 1-[6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl) amino)hexyl]-1H-pyrrole-2,5-dione, suggesting a role for a diacylglycerol-independent atypical PKC (aPKC) isoform. In this regard, modulation of firing by dopamine was prevented by intracellular perfusion of a pseudosubstrate peptide inhibitor for aPKCs. We also provide evidence, using an in vitro kinase assay, that dopamine receptor activation increased aPKC activity in striatal membranes. Finally, direct activation of PKA with forskolin enhanced firing even during inhibition of aPKCs, suggesting that aPKCs acted upstream of PKA activation. Thus, aPKCs appear to mediate dopaminergic enhancement of spike firing in the NAcb shell, and may therefore play a critical role in NAcb-and dopamine-dependent goal-directed behaviors.
Journal of Neuroscience, 2010
Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is known to contribute to the expression of psychostimulant sensitization by regulating dopamine (DA) overflow from DA neuron terminals in the nucleus accumbens (NAcc). The present experiments explored the contribution of CaMKII in NAcc neurons postsynaptic to these terminals where it is known to participate in a number of signaling pathways that regulate responding to psychostimulant drugs. Exposure to amphetamine transiently increased αCaMKII levels in the shell but not the core of the NAcc. Thus, HSV (herpes simplex viral) vectors were used to transiently overexpress αCaMKII in NAcc neurons in drug-naive rats, and behavioral responding to amphetamine was assessed. Transiently overexpressing αCaMKII in the NAcc shell led to long-lasting enhancement of amphetamine-induced locomotion and selfadministration manifested when αCaMKII levels were elevated and persisting long after they had returned to baseline. Enhanced locomotion was not observed after infection in the NAcc core or sites adjacent to the NAcc. Transient elevation of NAcc shell αCaMKII levels also enhanced locomotor responding to NAcc AMPA and increased phosphorylation levels of GluR1 (Ser831), a CaMKII site, both soon and long after infection. Similar increases in pGluR1 (Ser831) were observed both soon and long after exposure to amphetamine. These results indicate that the transient increase in αCaMKII observed in neurons of the NAcc shell after viral-mediated gene transfer and likely exposure to amphetamine leads to neuroadaptations in AMPA receptor signaling in this site that may contribute to the long-lasting maintenance of behavioral and incentive sensitization by psychostimulant drugs like amphetamine.
Neuropharmacology, 2008
Amphetamine (AMPH) is a potent dopamine (DA) transporter (DAT) inhibitor that markedly increases extracellular DA levels. In addition to its actions as a DAT antagonist, acute AMPH exposure induces DAT losses from the plasma membrane, implicating transporter-specific membrane trafficking in amphetamine's actions. Despite reports that AMPH modulates DAT surface expression, the trafficking mechanisms leading to this effect are currently not defined. We recently reported that DAT residues 587-596 play an integral role in constitutive and protein kinase C (PKC)-accelerated DAT internalization. In the current study, we tested whether the structural determinants required for PKC-stimulated DAT internalization are necessary for AMPH-induced DAT sequestration. Acute amphetamine exposure increased DAT endocytic rates, but DAT carboxy terminal residues 587-590, which are required for PKC-stimulated internalization, were not required for AMPH-accelerated DAT endocytosis. AMPH decreased DAT...
Neuroscience Letters, 2008
Microinjection of the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 into the nucleus accumbens (NAcc) shell impairs expression of the sensitized locomotion and NAcc dopamine (DA) overflow normally observed in psychostimulant-exposed rats. Based on these results, we investigated the effect of NAcc shell KN-93 on the enhanced amphetamine (AMPH) intake normally observed in AMPH-relative to saline-exposed rats. Rats were administered five injections of either AMPH (1.5 mg/kg, i.p.) or saline, one injection every two-three days. Fourteen days following the last injection, they were trained to self-administer AMPH (200 μg/kg/infusion, i.v.) first on fixed ratio schedules (FR) and then on a progressive ratio schedule of reinforcement (PR). As expected, AMPH-exposed rats worked harder and obtained significantly more drug infusions than saline-exposed rats on the PR schedule. After four days of stable responding, all rats were bilaterally microinjected with KN-93 (1 or 10 nmol/0.5 μl/side) into the NAcc shell, two minutes prior to the beginning of the self-administration session. Inhibiting CaMKII in this site reduced the enhanced drug intake observed in AMPH-exposed rats to levels no longer significantly different from those of saline-exposed rats. Responding in these latter controls was not affected by KN-93 nor did KN-93 affect responding in AMPH-exposed rats when it was infused into the NAcc core. Thus, in a manner similar to what has been reported for sensitized locomotion and NAcc DA overflow, these results suggest that inhibiting CaMKII in the NAcc shell attenuates the enhanced motivation to obtain a drug reinforcer that is normally displayed in AMPH-exposed rats.
Journal of Neurochemistry, 2003
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPHmediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nM and 300 nM), Ro31-8220 (300 nM) and the MAP kinase kinase inhibitor, PD98059 (30 lM) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nM) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 lM Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.
Neuropharmacology, 2014
Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclindependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threoninealanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2012
Adaptation of putative dopaminergic (pDA) neurons in the ventral tegmental area (VTA) to drugs of abuse may alter information processing related to reward and reinforcement and is an important factor in the development of addiction. We have demonstrated that prolonged increases in the concentration of dopamine (DA) result in a time-dependent decrease in sensitivity of pDA neurons to DA, which we termed DA inhibition reversal (DIR). In this study, we used extracellular recordings to examine factors mediating DIR. A 40 min administration of DA (2.5-10 μM), but not the DA D2 receptor agonist quinpirole (50-200 nM), resulted in inhibition of neuronal firing followed by DIR. In the presence of 100 nM cocaine, inhibition followed by DIR was seen with much lower DA concentrations. Reversal of quinpirole inhibition could be induced by an activator of protein kinase C, but not of protein kinase A. Inhibitors of protein kinase C or phospholipase C blocked the development of DIR. Disruption of...
Behavioural Brain Research, 2014
When psychostimulant drugs like amphetamine are administered repeatedly in the presence of a contextual stimulus complex, long-lasting associations form between the unconditioned effects of the drug and the contextual stimuli. Here we assessed the role played by the proline-directed serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) in the nucleus accumbens (NAcc) on the expression of the conditioned locomotion normally observed when rats are returned to a context previously paired with amphetamine. Infusing the Cdk5 inhibitor roscovitine (40 nmol/0.5μl/side) into the NAcc 30-min before the test for conditioning significantly enhanced the conditioned locomotor response observed in rats previously administered amphetamine in the test environment. This effect was specific to the expression of a conditioned response as inhibiting Cdk5 produced no effect in control rats previously administered saline or previously administered amphetamine elsewhere. As inhibiting Cdk5 during exposure to amphetamine has been found to block the accrual of locomotor conditioning, the present results suggest distinct roles for NAcc Cdk5 in the induction and expression of excitatory conditioning by amphetamine.