Secure Algorithm for IoT Devices Authentication (original) (raw)
Internet of Things (IoT) security is a major concern owing to the sensitive data that flows in these networks. The fifth generation (5G) network provides high bandwidth, endearing it as an ideal underlying network for IoT communication. In addition, 5G can facilitate seamless integration of 2G, 3G, 4G, and WiFi to realize faster services, high capacity, and very short latencies. Although 5G features such as high bandwidth and seamless integration are ideal for IoT implementations, the underlying network is vulnerable to attacks such as eavesdropping, de-synchronization, sink hole, denial of service (DoS) and replay attacks, among others. To address these challenges, a number of protocols based on techniques such as elliptic curve cryptography (ECC), trusted authority, quantum cryptography, public keys, private keys, pseudonymous certificates, group handover authentication, multi-signature, and aggregate message authentication code (AMAC) technology have been proposed. Unfortunately, these protocols either have high computation and communication costs or do not provide robust security required for IoT devices communication. This renders them inefficient and susceptible to attacks such as impersonation, privacy and location sniffing, eavesdropping, session key disclosure attacks, modification, and insider attacks. Consequently, there is need for an efficient and secure key agreement and session authentication protocol for IoT deployments. In this paper, an efficient and secure handover protocol for IoT devices is proposed. The simulation results showed that this protocol exhibited lower computation and turnaround time, high stability, and moderate communications costs. It was also demonstrated to be robust against masquerading, packet replay, eavesdropping, free riding attacks, privacy and location sniffing.