Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization (original) (raw)
Related papers
Engineered peptides for the development of actively tumor targeted liposomal carriers of doxorubicin
Cancer Letters, 2013
Chemotherapy is still the treatment of choice for many types of cancer; but its effectiveness is hampered by dose limiting toxicity. Properly designed delivery systems can overcome this shortcoming by reducing the non-specific distribution and toxicity of chemotherapeutics in healthy organs and at the same time increasing drug concentrations at tumor tissue. In this study, we developed stealth liposomal formulations of doxorubicin (DOX) having a novel stable engineered peptide ligand, namely p18-4, that binds specifically to breast cancer cell line MDA-MB-435 on its surface. The coupling of p18-4 to liposomes was carried out through conventional, post insertion and post conjugation techniques and prepared liposomes were characterized for their size and level of peptide modification. The p18-4 decorated liposomal DOX formulations were then evaluated for their cellular uptake as well as cytotoxicity against the human breast cancer MDA-MB-435 cells. In this context, the effect of coupling technique on the uptake and cytotoxicity of p18-4 liposomal DOX in MDA-MB-435 cells was evaluated. The conventional and post conjugation methods of peptide incorporation were found to be more reliable for the preparation of p18-4 decorated liposomes for active DOX targeting to MDA-MB-435 cells. p18-4 decoration of liposomes by these methods did not have a notable effect on the size of prepared liposomes and DOX release, but increased the uptake and cytotoxicity of encapsulated DOX in MDA-MB-435 cells. The results show a potential for p18-4 decorated liposomes prepared by conventional and post conjugation method for tumor targeted delivery of DOX in breast tumor models.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2016
Nowadays cancer is one of the most common causes of deaths worldwide. Conventional antitumor agents still present various problems related to specificity for tumor cells often leading to therapeutic failure. Nanoscale particles are considered potential alternative to direct access of drugs into tumor cells, therefore increasing the drug accumulation and performance. The aim of this study was to evaluate the antitumor activity of doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) versus liposomes against a breast cancer animal experimental model. NLC-DOX and liposomes-DOX were successfully prepared and characterized. Tumor-bearing mice were divided into five groups (blank-NLC, blank-liposome, DOX, NLC-DOX, liposome-DOX). Each animal received by the tail vein four doses of antitumoral drugs (total dose, 16mg/kg), every 3 days. Antitumor efficacy was assessed by measuring 1) tumor volume, calculating the inhibitory ratio (TV-IR, see after) and 2) acquiring scintigraphic image...
International Journal of Pharmaceutics, 2016
We have investigated the co-addition of Hexadecylphosphocholine (HePC) and a Tat derived peptide (Tat), coupled to Maleimide-PEG2000-DSPE Pegylated liposomal doxorubicin (PLD) in many respects, including drug and liposome cellular delivery, drug release, biodistribution, in vivo cell delivery and antitumor activity. The liposomes were HePC-free and-containing liposomes, from which liposomes with 25, 50, 100 and 200 numbers of Tat/liposome were prepared. Similarly, DiI-C18 (3)-model liposomes (DiI-L and DiI-HePC-L) were prepared. HePC and Tat increased cellular delivery of Dox and cytotoxicity in B16F0 melanoma and C26 colon carcinoma cells. Tat enhanced liposome-cell interaction and caused Dox burst release. HePC and Tat reduced the serum retention time of liposomal Dox, slightly and dramatically, respectively. In comparison, Tat-liposomes enhanced Dox delivery to liver and spleen cells 3 h post-injection. Likewise, Dox content of these tissues and tumor was lower at 24 h. The naïve liposomes retarded tumor growth more effectively and their related median survival time of the treated C26 bearing BALB/c mice was longer than those of Tat-liposomes (MST > 45 days versus MST < 38 days). Overall liposomes exhibiting sustained drug release and negligible cell interaction were more suitable delivery systems in targeting cancerous tumors and suppressing their growth.
The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity
IET Nanobiotechnology, 2022
The size of nanoliposome-encapsulated drugs significantly affects their therapeutic efficacy, biodistribution, targeting ability, and toxicity profile for the cancer treatment. In the present study, the biodistribution and anti-tumoral activity of PEGylated liposomal Doxorubicin (PLD) formulations with different sizes were investigated. First, 100, 200, and 400 nm PLDs were prepared by remote loading procedure and characterised for their size, zeta potential, encapsulation efficacy, and release properties. Then, in vitro cellular uptake and cytotoxicity were studied by flow cytometry and MTT assay, and compared with commercially available PLD Caelyx ®. In vivo studies were applied on BALB/c mice bearing C26 colon carcinoma. The cytotoxicity and cellular uptake tests did not demonstrate any statistically significant differences between PLDs. The biodistribution results showed that Caelyx ® and 100 nm liposomal formulations had the most doxorubicin (Dox) accumulation in the tumour tissue and, as a result, considerably suppressed tumour growth compared with 200 and 400 nm PLDs. In contrast, larger nanoparticles (200 and 400 nm formulations) had more accumulation in the liver and spleen. This study revealed that 90 nm Caelyx ® biodistribution profile led to the stronger anti-tumour activity of the drug and hence significant survival extension, and showed the importance of vesicle size in the targeting of nanoparticles to the tumour microenvironment for the treatment of cancer.
Clinical Cancer Research, 2009
Purpose-The efficacy of drug delivery systems can be enhanced by making them target-specific via the attachment of various ligands. We attempted to enhance tumor accumulation and therapeutic effect of doxorubicin-loaded long-circulating PEGylated liposomes (Doxil®, ALZA Corp.) by coupling to their surface the anti-cancer monoclonal antibody 2C5 (mAb 2C5) with nuclesome (NS)restricted activity, that can recognize the surface of various tumor but not normal cells and specifically targets pharmaceutical carriers to tumor cells in vitro and in vivo. Following earlier in vitro results with various cancer cell lines, the mAb 2C5-liposomes were studied in vivo vs. plain and non-specific IgG-liposomes.
European Journal of Pharmaceutics and Biopharmaceutics, 2013
Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL ® or Lipodox ®) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol-dioleoyl phosphatidylethanolamine (PEG-DOPE) amphiphilic co-polymer. The resultant R8-PEG-PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1 h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4 h followed by 24 h incubation) and enhanced suppression of tumor growth (348 ± 53 mm 3 for R8-Dox-L, compared to 504 ± 54 mm 3 for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity.
Iranian Journal of Pharmaceutical Research : IJPR, 2018
The aim of current study was to investigate the effect of Brij decoration of liposomes on in-vitro and in-vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidylcholine and cholesterol as well as Brij-enriched liposomal dispersions were prepared and characterized. In-vivo pharmacokinetics of various liposomal formulations and drug solution (six groups) was studied after intravenous administration to rats. Conventional and Brij enriched doxorubicin (DOX) liposomes had small size within 82-97 nm and showed homogenous distribution (PDI < 0.1). Drug encapsulation was higher than 97% in all liposomes. The drug release profiles proved sustained DOX release from various formulations. Based on the results of in-vivo studies, all five liposomes increased d...
Journal of Peptide Science, 2015
A new dual-ligand liposomal doxorubicin delivery system, which couples targeting to enhanced cellular uptake and may lead to a more efficient drug delivery system, is here designed and synthetized. Liposomes based on the composition 1,2-dioleoyl-snglycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-Peg2000-R8/(C18) 2 -L5-SS-CCK8 (87/8/5 mol/mol/mol) were prepared and loaded with doxorubicin. Presence of the two peptides on the external surface is demonstrated by fluorescence resonance energy transfer assay. The combination of the R8 cell-penetrating peptide and of the CCK8 targeting peptide (homing peptide) on the liposome surface is obtained by combining pre-modification and post-modification methods. In the dual-ligand system, the CCK8 peptide is anchored to the liposome surface by using a disulfide bond. This chemical function is inserted in order to promote the selective cleavage of the homing peptide under the reductive conditions expected in proximity of the tumor site, thus allowing targeting and internalization of the liposomal drug.
Lasers in surgery and medicine, 2015
Long circulating doxorubicin (Dox)-loaded PEGylated liposomes are clinically safer than the free form due to the significant reduction of cardiac toxicity. However, the therapeutic efficacy of the PEGylated liposome could further be improved if poor diffusivity and slow drug release of the liposome in tumor interstitium can be overcome. In this study, a dual-effect liposome triggered by photodynamic effect was developed to improve the therapeutic efficacy of Dox-loaded PEGylated liposomes. Dox and chlorin e6 (Ce6) were co-encapsulated in PEGylated liposomes (named as PL-Dox-Ce6). To induce the drug release, photodynamic effect was triggered by the light irradiation of a 662 nm diode laser. The cellular distribution of Dox and Ce6 was examined under confocal microscope. The in vitro and in vivo cytotoxicity of PL-Dox-Ce6 was determined via the colony formation assay and the synergistic C26 tumor model, respectively. The cellular distribution of PL-Dox-Ce6 was in the cytoplasmic area;...