Spatiotemporal Distribution of Drought Based on the Standardized Precipitation Index and Cloud Models in the Haihe Plain, China (original) (raw)
Related papers
Journal of Hydrometeorology, 2020
This study elucidates drought characteristics in China during 1980–2015 using two commonly used meteorological drought indices: standardized precipitation index (SPI) and standardized precipitation–evapotranspiration index (SPEI). The results show that SPEI characterizes an overall increase in drought severity, area, and frequency during 1998–2015 compared with those during 1980–97, mainly due to the increasing potential evapotranspiration. By contrast, SPI does not reveal this phenomenon since precipitation does not exhibit a significant change overall. We further identify individual drought events using the three-dimensional (i.e., longitude, latitude, and time) clustering algorithm and apply the severity–area–duration (SAD) method to examine the drought spatiotemporal dynamics. Compared to SPI, SPEI identifies a lower drought frequency but with larger total drought areas overall. Additionally, SPEI identifies a greater number of severe drought events but a smaller number of sligh...
Against the backdrop of global climate change, the frequency of drought events is increasing, leading to significant impacts on human society and development. Therefore, it is crucial to study the propagation patterns and trends of drought characteristics over a long-time scale. The main objective of this study is to delineate the dynamics of drought characteristics by examining their propagation patterns in China from 1951 to 2020. In this study, precipitation data from meteorological stations across mainland China were used. A comprehensive dataset consisting of 700 stations over the past 70 years was collected and analyzed. To ensure data accuracy, the GPCC database was employed for data correction and gap filling. Long-term drought evolution was assessed using both the SPI-12 and SPEI-12 indices to detect drought characteristics. Two Moran indices were applied to identify propagation patterns, and the MK analysis method along with the Theil-Sen slope estimator were utilized to t...
Spatial and temporal pattern of precipitation and drought in Gansu Province, Northwest China
Natural Hazards, 2009
Drought is one of the most harmful natural hazards in Gansu Province in Northwest China. The changes of precipitation affect the severity of drought. In order to recognize the trend of precipitation and understand the effect of rainfall change on water resources management and drought severity, Mann–Kendall test was used. Standardized Precipitation Index (SPI) was calculated to reconstruct the drought at different time scales and analyze the frequency of drought occurrence in the recent 50 years. The results show that the SPI is applicable in Gansu Province. The number of severe droughts differs among regions: it is more obvious as a 3-month drought in the Yellow River Basin and the Yangtze River Basin than in the Inland River Basin, and other droughts at 6-, 9-, and 12-month time scales have the same effect in the three regions. Mann–Kendall test results show that there is an upward trend in the summer periods and a downward trend in the autumn-winter-spring intervals ranging from 10.5 mm/10 years to −37.4 mm/10 years, which affect the local water resources management, droughts mitigation, and agriculture decision making. This situation poses challenges for future study.
Water, 2020
Global climate change not only affects the processes within the water cycle but also leads to the frequent occurrences of local and regional extreme drought events. In China, spatial and temporal characterizations of drought events and their future changing trends are of great importance in water resources planning and management. In this study, we employed self-calibrating Palmer drought severity index (SC-PDSI), cluster algorithm, and severity-area-duration (SAD) methods to identify drought events and analyze the spatial and temporal distributions of various drought characteristics in China using observed data and CMIP5 model outputs. Results showed that during the historical period (1961–2000), the drought event of September 1965 was the most severe, affecting 47.07% of the entire land area of China, and shorter duration drought centers (lasting less than 6 months) were distributed all over the country. In the future (2021–2060), under both representative concentration pathway (R...