Atomic Force Microscoty (AFM) Research Papers (original) (raw)

This investigation is dedicated to unlocking the hidden potential of discarded cosmetics towards building green sustainable road pavements in the future. It is particularly aiming at exploring waste lipstick (WLS) as a high-quality... more

This investigation is dedicated to unlocking the hidden potential of discarded cosmetics towards building green sustainable road pavements in the future. It is particularly aiming at exploring waste lipstick (WLS) as a high-quality functional additive for advanced asphalt mix technologies. To fuel this novel innovation, the effect of various WLS doses (e.g., 5, 10, and 15 wt.%) on the performance of base AP-5 asphalt cement was studied in detail. A wide array of cutting-edge analytical lab techniques was employed to inspect in-depth the physicochemical, microstructural, thermo-morphological, and rheological properties of resultant admixtures including: elemental analysis, Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), needle penetration, ring and ball softening point, Brookfield viscometer, ductility, and dynamic shear rheometer (DSR) tests. Unlike the unstable response of asphaltenes, the additive/artificial aging treatments increased the fraction of resins the most, and decreased that of aromatics; however, asphaltenes did not impair the saturates portion, according to Iatroscan research. FT-IR scan divulged that the WLS-asphalt interaction was physical rather than chemical. XRD diagnosis not only revealed an obvious correlation between the asphaltenes content and the fresh-binder crystallinity but also revealed the presence of fillers in the WLS, which may generate outstanding technical qualities to bituminous mixes. According to AFM/SEM analyses, the stepwise incorporation of WLS grew the magnitude of the “bee-shaped” microstructures and extended the roughness rate of unaged/aged binders. The prolonged consumption of the high thermal-stable additive caused a remarkable drop in the onset degradation and glass transition temperature of mixtures, thus enhancing their workability and low-temperature performance, according to TGA/DTGA/DSC data. The DSR and empirical rheological experiments demonstrated that the WLS could effectively lower the manufacturing and compaction temperatures of asphalt mixes and impart them with valuable anti-aging/fatigue-cracking assets. In a nutshell, the use of waste lipstick as an asphalt modifier is viable and cost-effective and could attenuate the pollution arisen from the beauty sector, while improving the performance of hot/warm asphalt mixes (HAM/WAM) and extending the service life of roadways.