Gene Conversion Research Papers - Academia.edu (original) (raw)
MOTIVATION: Several methods in molecular population genetics have recently been described to estimate the amount and pattern of the DNA polymorphism in natural populations, and also to test the neutral theory of molecular evolution. These... more
MOTIVATION: Several methods in molecular population genetics have recently been described to estimate the amount and pattern of the DNA polymorphism in natural populations, and also to test the neutral theory of molecular evolution. These methods are essential for ...
Each difference between the genome sequences of Escherichia coli B strains REL606 and BL21(DE3) can be interpreted in light of known laboratory manipulations plus a gene conversion between ribosomal RNA operons. Two treatments with... more
Each difference between the genome sequences of Escherichia coli B strains REL606 and BL21(DE3) can be interpreted in light of known laboratory manipulations plus a gene conversion between ribosomal RNA operons. Two treatments with 1-methyl-3-nitro-1-nitrosoguanidine in the REL606 lineage produced at least 93 single-base-pair mutations (∼ 90% GC-to-AT transitions) and 3 single-base-pair GC deletions. Two UV treatments in the BL21(DE3) lineage produced only 4 single-base-pair mutations but 16 large deletions. P1 transductions from K-12 into the two B lineages produced 317 single-base-pair differences and 9 insertions or deletions, reflecting differences between B DNA in BL21(DE3) and integrated restriction fragments of K-12 DNA inherited by REL606. Two sites showed selective enrichment of spontaneous mutations. No unselected spontaneous singlebase-pair mutations were evident. The genome sequences revealed that a progenitor of REL606 had been misidentified, explaining initially perplexing differences. Limited sequencing of other B strains defined characteristic properties of B and allowed assembly of the inferred genome of the ancestral B of Delbrück and Luria. Comparison of the B and K-12 genomes shows that more than half of the 3793 proteins of their basic genomes are predicted to be identical, although ∼ 310 appear to be functional in either B or K-12 but not in both. The ancestral basic genome appears to have had ∼4039 coding sequences occupying ∼ 4.0 Mbp. Repeated horizontal transfer from diverged Escherichia coli genomes and homologous recombination may explain the observed variable distribution of single-base-pair differences. Fifteen sites are occupied by phage-related elements, but only six by comparable elements at the same site. More than 50 sites are occupied by IS elements in both B and K, 16 in common, and likely founding IS elements are identified. A signature of widespread cryptic phage P4-type mobile elements was identified. Complex deletions (dense clusters of small deletions and substitutions) apparently removed nonessential genes from ∼30 sites in the basic genomes.
Punica granatum L. (Punicaceae) whole fruit extracts, have been used in Cuban traditional medicine as an effective drug for the treatment of respiratory diseases. This species showed interesting anti-viral activity, e.g. aqueous or... more
Punica granatum L. (Punicaceae) whole fruit extracts, have been used in Cuban traditional medicine as an effective drug for the treatment of respiratory diseases. This species showed interesting anti-viral activity, e.g. aqueous or hydroalcoholic extracts of whole fruits have proved highly active against the influenza virus. However, some toxic properties of this extract have also been reported and, to date, very little is known about its genotoxic properties. In the present study, the genotoxicity of a Punica granatum (pomegranate) whole fruit extract was assessed using different in vitro and in vivo assays that detect DNA damage at different expression levels. Results from reversion and gene-conversion test in microorganisms, sister chromatid exchanges, micronuclei and sperm-shape abnormality assays in mice, clearly showed that the hydroalcoholic extract of P. granatum whole fruits is genotoxic when tested both in vitro and in vivo.
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose.
- by Kathleen Hruska
- •
- Genetics, Polymorphism, Human, Mutation
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens... more
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting" crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions-transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed. (Endocrine Reviews 21: 2000)
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens... more
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting" crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions-transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed. (Endocrine Reviews 21: 2000)
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear.... more
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provi...
- by Yin Huang and +3
- •
- Molecular Evolution, Multidisciplinary, Polyploidy, Plant Genome Project
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21- hydroxylase deficiency. Females with severe, classic 21-hydroxy- lase deficiency are exposed to excess... more
More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21- hydroxylase deficiency. Females with severe, classic 21-hydroxy- lase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot syn- thesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting"
The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a... more
The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a wide variety of invertebrates. We review here penaeidins and crustins in crustaceans, the allorecognition system encoded by fuhc, fester and Uncle fester in a colonial tunicate, Dscam and PGRPs in arthropods, FREPs in snails, VCBPs in protochordates, and the Sp185/333 system in the purple sea urchin. Comparisons among immune systems, including those reviewed here have not identified an immune specific regulatory "genetic toolkit", however, repeatedly identified sequences (or "building materials" on which the tools act) are present in a broad range of immune systems. These include a Toll/TLR system, a primitive complement system, an LPS binding protein, and a RAG core/Transib element. Repeatedly identified domains and motifs that function in immune proteins include NACHT, LRR, Ig, death, TIR, lectin domains, and a thioester motif. In addition, there are repeatedly identified mechanisms (or "construction methods") that generate sequence diversity in genes with immune function. These include genomic instability, duplications and/or deletions of sequences and the generation of clusters of similar genes or exons that appear as families, gene recombination, gene conversion, retrotransposition, alternative splicing, multiple alleles for single copy genes, and RNA editing. These commonly employed "materials and methods" for building and maintaining an effective immune system that might have been part of that ancestral system appear now as a fragmented and likely incomplete set, likely due to the rapid evolutionary change (or loss) of host genes that are under pressure to keep pace with pathogen diversity.
We review and extend data showing concerted evolution of parental 18-5.8-26S nuclear ribosomal DNA (18-26S rDNA) gene families in three natural Nicotiana allotetraploids ( N. tabacum , N. rustica and N. arentsii , each 2 n = 4 x = 48) and... more
We review and extend data showing concerted evolution of parental 18-5.8-26S nuclear ribosomal DNA (18-26S rDNA) gene families in three natural Nicotiana allotetraploids ( N. tabacum , N. rustica and N. arentsii , each 2 n = 4 x = 48) and one synthetic N. tabacum line (Th37, Ǩ N. sylvestris (2 n = 24) ¥ ǩ N. tomentosiformis (2 n = 24)). The origin of the gene families was analysed by sequence polymorphisms in the intergenic spacer (IGS) region and the number of chromosomal loci by fluorescence in situ hybridization (FISH). FISH revealed that the number and locations of 18-26S rDNA in the natural allopolyploids was the sum of those found in the diploid progenitors. However, the rDNA restriction patterns showed polymorphisms in the IGS that were not additive, suggesting that parental rDNA clusters were partially ( N. tabacum, N. rustica ) or completely ( N. arentsii ) overwritten by hybrid-specific units. Thus the Nicotiana allotetraploids show evidence of concerted evolution, including both intralocus and interlocus gene conversion. A feral N. tabacum collected in Bolivia had a higher proportion of unconverted parental rDNA units than cultivated tobacco varieties, suggesting either that rDNA homogenization is accelerated by inbreeding or multiple origins of tobacco. There is no evidence for the elimination of N. sylvestris-derived rDNA units in the synthetic Th37 tobacco line as occurred in natural tobacco, although several novel rDNA unit variants were found in most but not all the hybrid plants. Factors that may control the occurrence and extent of rDNA homogenization are discussed for allopolyploids in Nicotiana and other taxa.
Phage display has become an important approach for the preparation of monoclonal antibodies from both immune and nonimmune sources. This approach allows for the rapid selection of monoclonal antibodies without the restraints of the... more
Phage display has become an important approach for the preparation of monoclonal antibodies from both immune and nonimmune sources. This approach allows for the rapid selection of monoclonal antibodies without the restraints of the conventional hybridoma approach. Although antibodies to a wide variety of antigens have been selected using phage display, some highly conserved mammalian antigens have proven to be less immunogenic in mammalian animals commonly used for immunization. In order to optimize methods for constructing chicken immunoglobulin phage display libraries in the pComb3 system, we have immunized chickens with the hapten fluorescein, and generated combinatorial antibody libraries from spleen and bone marrow RNA. Herein we present methods for the isolation of scFv, diabody and Fab fragment libraries from chickens. Chicken Fab fragment libraries are constructed using human constant regions, facilitating detection with readily available reagents as well as humanization. Analysis of the selected V-genes revealed that gene conversion events were more extensive in light-chain variable region genes as compared to heavy-chain variable region genes. In addition, we present a new variant of the pComb3 phage display vector system.
- by Peter Steinberger and +1
- •
- Immunology, Phage display, Immunization, Monoclonal Antibodies
Motivation: Understanding haplotype evolution subject to mutation, recombination and gene conversion is fundamental to understand genetic specificities of human populations and hereditary bases of complex disorders. The goal of this... more
Motivation: Understanding haplotype evolution subject to mutation, recombination and gene conversion is fundamental to understand genetic specificities of human populations and hereditary bases of complex disorders. The goal of this project is to develop new algorithmic tools assisting the reconstruction of historical relationships between haplotypes and the inference of haplotypes from genotypes. Results: We present two new algorithms. The first one finds an optimal pathway of mutations, recombinations and gene conversions leading to a given haplotype of size m from a population of h haplotypes. It runs in time O(mhs 2 ), where s is the maximum number of contiguous sites that can be exchanged in a single gene conversion. The second one finds an optimal pathway of mutations and recombinations leading to a given genotype, and runs in time O(mh 2 ). Both algorithms are based on a penalty score model and use a dynamic programming approach. We apply the second one to the problem of inferring haplotypes from genotypes, and show how it can be used as an independent tool, or to improve the performance of existing methods. Availability: The algorithms have been implemented in JAVA and are available on request.
The development of an efficient and homologous transformation system for Aspergillus oryzae is described. This is based on nitrate reductase (niaD) of the nitrate assimilation pathway. The niaD system offers a number of inherent... more
The development of an efficient and homologous transformation system for Aspergillus oryzae is described. This is based on nitrate reductase (niaD) of the nitrate assimilation pathway. The niaD system offers a number of inherent advantages over many other systems and may be of general use for nitrate-utilising filamentous fungi. Transformation frequencies of up to 800 transformants per microgram DNA are observed with A. oryzae. The preponderance of integration events take place at the resident niaD locus either by gene conversion (41%), single integration (23%) or multiple tandem integration (36%). Heterologous expression of the A. oryzae niaD gene in the filamentous fungi A. nidulans, A. niger and Penicillium chrysogenum is observed. That heterologous putative niaD hybridisation signals are seen with other fungal DNAs affords the opportunity to isolate the corresponding niaD from various fungi in order to develop homolgous transformation. Co-transformation with the introduction of the non-selected markers pyrG, tub-2, and uidA has been achieved.
Pairs of closely linked defective herpes simplex virus (HSV) thymidine kinase (tk) gene sequences exhibiting various nucleotide heterologies were introduced into the genome of mouse Ltk- cells. Recombination events were recovered by... more
Pairs of closely linked defective herpes simplex virus (HSV) thymidine kinase (tk) gene sequences exhibiting various nucleotide heterologies were introduced into the genome of mouse Ltk- cells. Recombination events were recovered by selecting for the correction of a 16-bp insertion mutation in one of the tk sequences. We had previously shown that when two tk sequences shared a region of 232 bp of homology, interruption of the homology by two single nucleotide heterologies placed 19 bp apart reduced recombination nearly 20-fold. We now report that either one of the nucleotide heterologies alone reduces recombination only about 2.5-fold, indicating that the original pair of single nucleotide heterologies acted synergistically to inhibit recombination. We tested a variety of pairs of single nucleotide heterologies and determined that they reduced recombination from 7- to 175-fold. Substrates potentially leading to G-G or C-C mispairs in presumptive heteroduplex DNA (hDNA) intermediates...
- by T. Lukacsovich
- •
- Genetics, DNA, Mice, Gene Conversion
Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently,... more
Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic datasets based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that base composition is far from mutation-...
Objectives: Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the αand β-like globin gene families. In numerous occasions, genetic recombination has been previously... more
Objectives: Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the αand β-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere.
Trypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular... more
Trypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular dating suggests that T. cruzi is likely to have been an endemic infection of neotropical mammalian fauna for many millions of years. Here we have applied a panel of 49 polymorphic microsatellite markers developed from the online T. cruzi genome to document genetic diversity among 53 isolates belonging to TcIIc, a lineage so far recorded almost exclusively in silvatic transmission cycles but increasingly a potential source of human infection. These data are complemented by parallel analysis of sequence variation in a fragment of the glucose-6-phosphate isomerase gene. New isolates confirm that TcIIc is associated with terrestrial transmission cycles and armadillo reservoir hosts, and demonstrate that TcIIc is far more widespread than previously thought, with a distribution at least from Western Venezuela to the Argentine Chaco. We show that TcIIc is truly a discrete T. cruzi lineage, that it could have an ancient origin and that diversity occurs within the terrestrial niche independently of the host species. We also show that spatial structure among TcIIc isolates from its principal host, the armadillo Dasypus novemcinctus, is greater than that among TcI from Didelphis spp. opossums and link this observation to differences in ecology of their respective niches. Homozygosity in TcIIc populations and some linkage indices indicate the possibility of recombination but cannot yet be effectively discriminated from a high genome-wide frequency of gene conversion. Finally, we suggest that the derived TcIIc population genetic data have a vital role in determining the origin of the epidemiologically important hybrid lineages TcIId and TcIIe.
We recently reported the structure of NEMO and demonstrated that most IP patients carry an identical deletion that arises due to misalignment between repeats. Affected male abortuses with the IP deletion had provided clues that a second,... more
We recently reported the structure of NEMO and demonstrated that most IP patients carry an identical deletion that arises due to misalignment between repeats. Affected male abortuses with the IP deletion had provided clues that a second, incomplete copy of NEMO was present in the genome. We have now identified clones containing this truncated copy (∆NEMO) and incorporated them into a previously constructed physical contig in distal Xq28. ∆NEMO maps 22 kb distal to NEMO and only contains exons 3-10, confirming our proposed model. A sequence of 26 kb 3′ of the NEMO coding sequence is also present in the same position relative to the ∆NEMO locus, bringing the total length of the duplication to 35.5 kb. The LAGE2 gene is also located within this duplicated region, and a similar but unique LAGE1 gene is located just distal to the duplicated loci. Mapping and sequence information indicated that the duplicated regions are in opposite orientation. Analysis of the great apes suggested that the NEMO/LAGE2 duplication occurred after divergence of the lineage leading to present day humans, chimpanzees and gorillas, ∼10-15 million years ago. Intriguingly, despite this substantial evolutionary history, only 22 single nucleotide differences exist between the two copies over the entire 35.5 kb, making the duplications >99% identical. This high sequence identity and the inverted orientations of the two copies, along with duplications of smaller internal sections within each copy, predispose this region to various genomic alterations. We detected four rearrangements that involved NEMO, ∆NEMO or LAGE1 and LAGE2. The high sequence similarity between the two NEMO/LAGE2 copies may be due to frequent gene conversion, as we have detected evidence of sequence transfer between them. Together, these data describe an unusual and complex genomic region that is susceptible to various types of pathogenic and polymorphic rearrangements, including the recurrent lethal deletion associated with IP.
Analysis of the genome-wide patterns of single-nucleotide substitution reveals that the human GC content structure is out of equilibrium. The substitutions are decreasing the overall GC content (GC), at the same time making its range... more
Analysis of the genome-wide patterns of single-nucleotide substitution reveals that the human GC content structure is out of equilibrium. The substitutions are decreasing the overall GC content (GC), at the same time making its range narrower. Investigation of single-nucleotide polymorphisms (SNPs) revealed that presently the decrease in GC content is due to a uniform mutational preference for A:T pairs, while its projected range is due to a variability in the fixation preference for G:C pairs. However, it is important to determine whether lessons learned about evolutionary processes operating at the present time (that is reflected in the SNP data) can be extended back into the evolutionary past. We describe here a new approach to this problem that utilizes the juxtaposition of forward and reverse substitution rates to determine the relative importance of variability in mutation rates and fixation probabilities in shaping long-term substitutional patterns. We use this approach to demonstrate that the forces shaping GC content structure over the recent past (since the appearance of the SNPs) extend all the way back to the mammalian radiation $90 million years ago. In addition, we find a small but significant effect that has not been detected in the SNP data-relatively high rates of C:G fi A:T germline mutation in low-GC regions of the genome.
The primary structure of two highly crossreactive human histocompatibility antigens, HLA-A28 and HLA-A2, has been determined to 96% and 90%, respectively, ofthe papainsolubilized molecules. Their sequences have been compared with the... more
The primary structure of two highly crossreactive human histocompatibility antigens, HLA-A28 and HLA-A2, has been determined to 96% and 90%, respectively, ofthe papainsolubilized molecules. Their sequences have been compared with the sequence of HLA-B7 and with each other in order to outline the sites of diversity. The overall homology between HLA-B7 and these HLA-A antigens is 86%. A large majority of the differences are located between residues 43 and 195. Within this area, substitutions cluster in at least three segments-residues 65-80, 105-116, and 177-194. HLA-A28 and HLA-A2 show 96% homology. Most of the differences fall within segments 65-74 and 107-116. These results strongly support the suggestion that residues in these segments are integral parts of the alloantigenic determinants of HLA-A28 and HLA-A2. It is further proposed that these three clusters may constitute major, albeit not exclusive, sites of antigenic diversity in human histocompatibility antigens. The nature of the differences among HLA-B7, HLA-A28, and HLA-A2. in the first variable segment suggests that gene conversion might play some role in the generation ofHIA polymorphism. Abbreviations: HLApp, papain-solubilized HLA antigen(s); PhNCS, phenylthiohydantoin-. § Present address: Immunobiology Research Center, Box 727, Univ. of Minnesota, Minneapolis, MN 55455. 3813
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear.... more
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provi...
Efficient natural transformation in Neisseria requires the presence of short DNA uptake sequences (DUSs). Doubts remain whether DUSs propagate by pure selfish molecular drive or are selected for 'safe sex' among conspecifics. Six... more
Efficient natural transformation in Neisseria requires the presence of short DNA uptake sequences (DUSs). Doubts remain whether DUSs propagate by pure selfish molecular drive or are selected for 'safe sex' among conspecifics. Six neisserial genomes were aligned to identify gene conversion fragments, DUS distribution, spacing, and conservation. We found a strong link between recombination and DUS: DUS spacing matches the size of conversion fragments; genomes with shorter conversion fragments have more DUSs and more conserved DUSs; and conversion fragments are enriched in DUSs. Many recent and singly occurring DUSs exhibit too high divergence with homologous sequences in other genomes to have arisen by point mutation, suggesting their appearance by recombination. DUSs are over-represented in the core genome, under-represented in regions under diversification, and absent in both recently acquired genes and recently lost core genes. This suggests that DUSs are implicated in geno...
Transforming growth factor-beta (TGF-β)/SMAD signaling is a key growth regulatory pathway often dysregulated in ovarian cancer and other malignancies. Although loss of TGF-β-mediated growth inhibition has been shown to contribute to... more
Transforming growth factor-beta (TGF-β)/SMAD signaling is a key growth regulatory pathway often dysregulated in ovarian cancer and other malignancies. Although loss of TGF-β-mediated growth inhibition has been shown to contribute to aberrant cell behavior, the epigenetic con- sequence(s) of impaired TGF-β/SMAD signaling on target genes is not well established. In this study, we show that TGF-β1 causes growth inhibition of
We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by... more
We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many c...
Here an analysis is presented of the roles of recombination and mutation in shaping previously determined haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL), scored in 71 individuals from... more
Here an analysis is presented of the roles of recombination and mutation in shaping previously determined haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL), scored in 71 individuals from three populations: 24 African Americans, 24 Finns, and 23 non-Hispanic whites. Recombination and gene-conversion events inferred from data on 88 haplotypes that were defined by 69 variable sites were tested. The analysis revealed 29 statistically significant recombination events and one gene-conversion event. The recombination events were concentrated in a 1.9-kb region, near the middle of the segment, that contains a microsatellite and a pair of tandem and complementary mononucleotide runs; both the microsatellite and the runs show length variation. An analysis of site variation revealed that 9.6% of the nucleotides at CpG sites were variable, as were 3% of the nucleotides found in mononucleotide runs of у5 nucleotides, 3% of the nucleotides found р3 bp from certain putative polymerase a-arrest sites, and 0.5% of the remaining nucleotides. This nonhomogeneous distribution of variation suggests that multiple mutational hits at certain sites are common, an observation that challenges the fundamental assumption of the infinite-sites-mutation model. The nonrandom patterns of recombination and mutation suggest that randomly chosen single-nucleotide polymorphisms may not be optimal for disequilibrium mapping of this gene. Overall, these results indicate that both recombinational and mutational hotspots have played significant roles in shaping the haplotype variation at the LPL locus.
a source of genomic fossil relics for the study of primate phylogenetics and human population genetics.
Background: RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs... more
Background: RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.
Background: Complete deletion of the complete AZFc interval of the Y chromosome is the most common known genetic cause of human male infertility. Two partial AZFc deletions (gr/gr and b1/b3) that remove some copies of all AZFc genes have... more
Background: Complete deletion of the complete AZFc interval of the Y chromosome is the most common known genetic cause of human male infertility. Two partial AZFc deletions (gr/gr and b1/b3) that remove some copies of all AZFc genes have recently been identified in infertile and fertile populations, and an association study indicates that the resulting gene dose reduction represents a risk factor for spermatogenic failure. Methods: To determine the incidence of various partial AZFc deletions and their effect on fertility, we combined quantitative and qualitative analyses of the AZFc interval at the DAZ and CDY1 loci in 300 infertile men and 399 control men. Results: We detected 34 partial AZFc deletions (32 gr/gr deletions), arising from at least 19 independent deletion events, and found gr/gr deletion in 6% of infertile and 3.5% of control men (p.0.05). Our data provide evidence for two large AZFc inversion polymorphisms, and for relative hot and cold spots of unequal crossing over within the blocks of homology that mediate gr/gr deletion. Using SFVs (sequence family variants), we discriminate DAZ1/2, DAZ3/4, CDY1a (proximal), and CDY1b (distal) and define four types of DAZ-CDY1 gr/gr deletion. Conclusions: The only deletion type to show an association with infertility was DAZ3/4-CDY1a (p = 0.042), suggesting that most gr/gr deletions are neutral variants. We see a stronger association, however, between loss of the CDY1a SFV and infertility (p = 0.002). Thus, loss of this SFV through deletion or gene conversion could be a major risk factor for male infertility.
Background: Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be... more
Background: Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids.
Allele transfer (“conversion”) was analyzed in transformations with a CmR determining hybrid plasmid, which contained a chromosomal gene controlling threonine prototrophy. In transformations, where a thr +-cell was transformed with the... more
Allele transfer (“conversion”) was analyzed in transformations with a CmR determining hybrid plasmid, which contained a chromosomal gene controlling threonine prototrophy. In transformations, where a thr +-cell was transformed with the thr - plasmid, the chromosomal allele was efficiently converted to the plasmid genotype. This process of gene conversion was rec dependent and greatly enhanced when monomeric rather than unfractionated plasmid DNA was used.
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on... more
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on patterns of nucleotide variability in those genomic regions close to, or included in, the inverted fragments. Here we report sequence variation at three anonymous regions (STSs) located
Although exchange of genetic information by recombination plays a role in the evolution of viruses, the extent to which it generates diversity is not clear. We analyzed genomes of geminiviruses for recombination using a new statistical... more
Although exchange of genetic information by recombination plays a role in the evolution of viruses, the extent to which it generates diversity is not clear. We analyzed genomes of geminiviruses for recombination using a new statistical procedure developed to detect gene conversions. Geminiviruses (family, Geminiviridae) are a group of plant viruses characterized by a genome of circular single-stranded DNA (ϳ2700 nucleotides in length) encapsidated in twinned quasi-isometric particles. Complete nucleotide sequences of geminiviruses were aligned, and recombination events were detected by searching pairs of viruses for sequences that are significantly more similar than expected based on random distribution of polymorphic sites. The analyses revealed that recombination is very frequent and occurs between species and within and across genera. Tests identified 420 statistically significant recombinant fragments distributed across the genome. The results suggest that recombination is a significant contributor to geminivirus evolution. The high rate of recombination may be contributing to the recent emergence of new geminivirus diseases.
Ecteinascidin 743 (ET-743) is a promising antitumoral drug for the treatment of soft tissues sarcomas, becoming a good candidate for clinical trials. However, the molecular mechanism of how ET-743 induces cells death is poorly understood.... more
Ecteinascidin 743 (ET-743) is a promising antitumoral drug for the treatment of soft tissues sarcomas, becoming a good candidate for clinical trials. However, the molecular mechanism of how ET-743 induces cells death is poorly understood. The chemical structure of ET-743 suggests that it can form cytotoxic cross-links with proteins and DNA. Experiments with Escherichia coli and mammalian cells indicate that the nucleotide excision repair (NER) pathway promotes ET-743 cytotoxicity. We therefore analyzed cytotoxicity and tolerance to ET-743 in the yeast Saccharomyces cerevisiae, defective for NER and/or base excision repair (BER), either in single mutants or in combination with mutant alleles of genes encoding proteins involved in DNA translesion synthesis (TLS) and homologous recombination (HR). Treatment of haploid and diploid S. cerevisiae strains with ET-743 led to induced mutagenesis, mitotic gene conversion, and crossing-over. The results indicated that yeast strains lacking endonucleases of the NER and BER pathways are especially resistant for ET-743. The mutagenesis data points to a weak mutagenic activity of ET-743 in both WT and strains lacking BER/NER endonuclease, and that a mutant blocked in both BER and TLS totally lacks induced mutagenesis. The diploid strain shows an increase in the frequencies of crossing-over and mitotic recombination. These data lead us to propose a model for ET-743 action in eukaryotic cells, where the presence of BER and NER endonucleases results in cell death. However, ET-743 damage can be tolerated in BER and/or NER mutants by TLS (error-prone) or in combination with HR (error-free). #
• This paper establishes relationships between two aspects of ribosomal DNA (rDNA) biology: epigenetic silencing of rDNA loci; and homogenization leading to concerted evolution.• Here, we examined rDNA inheritance and expression patterns... more
• This paper establishes relationships between two aspects of ribosomal DNA (rDNA) biology: epigenetic silencing of rDNA loci; and homogenization leading to concerted evolution.• Here, we examined rDNA inheritance and expression patterns in three natural Nicotiana allopolyploids (closest living descendants of diploid parents are given), N. rustica (N. paniculata × N. undulata), N. tabacum (N. sylvestris × N. tomentosiformis) and N. arentsii (N. undulata × N. wigandioides), and synthetic F1 hybrids and allopolyploids.• The extent of interlocus rDNA homogenization decreased in the direction N. arentsii > N. tabacum > N. rustica. The persistence of parental rDNA units in one of the subgenomes was associated with their transcription inactivity and likely heterochromatization. Of synthetic hybrids and polyploids only N. paniculata × N. undulata showed strong uniparental transcriptional silencing of rDNA triggered already in F1.• Epigenetic patterns of expression established early in allopolyploid nucleus formation may render units susceptible or resistant to homogenization over longer time-frames. We propose that nucleolus-associated transcription leaves rDNA units vulnerable to homogenization, while epigenetically inactivated units, well-separated from the nucleolus, remain unconverted.This paper establishes relationships between two aspects of ribosomal DNA (rDNA) biology: epigenetic silencing of rDNA loci; and homogenization leading to concerted evolution.Here, we examined rDNA inheritance and expression patterns in three natural Nicotiana allopolyploids (closest living descendants of diploid parents are given), N. rustica (N. paniculata × N. undulata), N. tabacum (N. sylvestris × N. tomentosiformis) and N. arentsii (N. undulata × N. wigandioides), and synthetic F1 hybrids and allopolyploids.The extent of interlocus rDNA homogenization decreased in the direction N. arentsii > N. tabacum > N. rustica. The persistence of parental rDNA units in one of the subgenomes was associated with their transcription inactivity and likely heterochromatization. Of synthetic hybrids and polyploids only N. paniculata × N. undulata showed strong uniparental transcriptional silencing of rDNA triggered already in F1.Epigenetic patterns of expression established early in allopolyploid nucleus formation may render units susceptible or resistant to homogenization over longer time-frames. We propose that nucleolus-associated transcription leaves rDNA units vulnerable to homogenization, while epigenetically inactivated units, well-separated from the nucleolus, remain unconverted.
We have sequenced more than 80 mutants of the bacteriophage T4 rIIA and rIIB genes. These include deletions about whose origin we have speculated, mutations affecting the rIIB promoters, various pseudo-revertants of the rII-phenotype,... more
We have sequenced more than 80 mutants of the bacteriophage T4 rIIA and rIIB genes. These include deletions about whose origin we have speculated, mutations affecting the rIIB promoters, various pseudo-revertants of the rII-phenotype, including mutations that bring about the reinitiation of translation following termination, mutations that affect regulation of rIIB translation by regA, the toxic minute plaquing mutants FC237 and FC238 and their detoxifiers, and many more of the classic frameshifts from the Cambridge collection. These mutants have been sequenced using dideoxy-mediated chain termination by either Escherichia coli DNA polymerase using single-stranded DNA as a template or by avian retroviral reverse transcriptase using mRNA or DNA as the template molecule. We list the sequence changes of the mutants with pertinent historic and phenotypic data. The mutants that facilitate translation reinitiation are discussed, and we discuss a model that could account for the generation of many of the mutations.
Much of what we know about the molecular mechanisms of repairing a broken chromosome has come from the analysis of site-specific double-strand breaks (DSBs). Such DSBs can be generated by conditional expression of meganucleases such as HO... more
Much of what we know about the molecular mechanisms of repairing a broken chromosome has come from the analysis of site-specific double-strand breaks (DSBs). Such DSBs can be generated by conditional expression of meganucleases such as HO or I-SceI or by the excision of a DNA transposable element. The synchronous creation of DSBs in nearly all cells of the population has made it possible to observe the progress of recombination by monitoring both the DNA itself and proteins that become associated with the recombining DNA. Both homologous recombination mechanisms and non-homologous end-joining (NHEJ) mechanisms of recombination have been defined by using these approaches. Here I focus on recombination events that lead to alterations of chromosome structure: transpositions, translocations, deletions, DNA fragment capture and other small insertions. These rearrangements can occur from ectopic gene conversions accompanied by crossing-over, break-induced replication, single-strand annealing or non-homologous end-joining.
TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2, which mediate azole resistance in Candida albicans. While a wild-type TAC1 allele drives high expression of CDR1/2... more
TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2, which mediate azole resistance in Candida albicans. While a wild-type TAC1 allele drives high expression of CDR1/2 in response to inducers, we showed previously that TAC1 can be hyperactive by a gain-of-function (GOF) point mutation responsible for constitutive high expression of CDR1/2. High azole resistance levels are achieved when C. albicans carries hyperactive alleles only as a consequence of loss of heterozygosity (LOH) at the TAC1 locus on chromosome 5 (Chr 5), which is linked to the mating-type-like (MTL) locus. Both are located on the Chr 5 left arm along with ERG11 (target of azoles). In this work, five groups of related isolates containing azole-susceptible and -resistant strains were analyzed for the TAC1 and ERG11 alleles and for Chr 5 alterations. While recovered ERG11 alleles contained known mutations, 17 new TAC1 alleles were isolated, including 7...
- by Alix Coste and +1
- •
- Molecular Evolution, Biological Sciences, Mitosis, Mutation
The Y-chromosome is a powerful tool for population geneticists to study human evolutionary history. Haploid and largely non-recombining, it should contain a simple record of past mutational events. However, this apparent simplicity is... more
The Y-chromosome is a powerful tool for population geneticists to study human evolutionary history. Haploid and largely non-recombining, it should contain a simple record of past mutational events. However, this apparent simplicity is compromised by Y-linked duplicons, which make up ∼ 35% of this chromosome; 25% of these duplicons are large inverted repeats (palindromes). For microsatellites lying in these palindromes, two loci cannot be easily distinguished due to PCR co-amplification, and this order misspecification of alleles generates an additional variance component. Due to this ambiguity, population geneticists have traditionally used an arbitrary method to assign the alleles (shorter allele to locus 1, larger allele to locus 2). Here, we simulate these posterior estimate distributions under three different novel allele assignment priors and compare this with the original method. We use a sample of 33 human populations, typed for duplicated microsatellites lying within palindrome P8, to illustrate our approach. We show that both intra-and inter-population statistics can be dramatically affected by order misspecification. Surprisingly, matrices of pairwise F-statistics or distance estimates appear far less sensitive to order misspecification and remain relatively unchanged under the priors considered, suggesting that these microsatellites can be considered as useful markers for population genetic studies using an appropriate data treatment. Duplicated microsatellites represent an attractive source of information to investigate the extensive structural polymorphism observed among human Y chromosomes, as well as processes of intra-chromosomal gene conversion acting between duplicons.