Gene Conversion Research Papers - Academia.edu (original) (raw)
2025, Heredity
X-linked meiotic drive causing female-biased progenies is known to occur in nine Drosophila species and is called 'sex-ratio'. In D. mediopunctata this trait is associated with the X:21 chromosome inversion and has variable expression. We... more
X-linked meiotic drive causing female-biased progenies is known to occur in nine Drosophila species and is called 'sex-ratio'. In D. mediopunctata this trait is associated with the X:21 chromosome inversion and has variable expression. We describe here a powerful Y-linked suppressor system of sex-ratio expression in this species. There are two types of Y chromosomes (suppressor and nonsuppressor) and two types of X: 21 chromosomes (suppressible and unsuppressible), Sexratio expression is suppressed in males with the 2 1suppressible/yuppressor genotype, whereas the remaining three genotypes produce female-biased progenies.
2025, Antimicrobial Agents and Chemotherapy
The development of resistance to linezolid (LZD) in gram-positive bacteria depends on the mutation of a single 23S rRNA gene, followed by homologous recombination and gene conversion of the other alleles. We sought to inhibit this process... more
The development of resistance to linezolid (LZD) in gram-positive bacteria depends on the mutation of a single 23S rRNA gene, followed by homologous recombination and gene conversion of the other alleles. We sought to inhibit this process in Staphylococcus aureus using a range of antibacterial agents, including some that suppress recombination. A model for the rapid selection of LZD resistance was developed which allowed the selection of LZD-resistant mutants with G2576T mutations in all five copies of the 23S rRNA gene following only 5 days of subculture. The emergence of LZD-resistant isolates was delayed by exposing cultures to low concentrations of various classes of antibiotics. All antibiotic classes were effective in delaying the selection of LZD-resistant mutants and, with the exception of fusidic acid (FUS) and rifampin (RIF), prolonged the selection window from 5 to ϳ15 days. Inhibitors of DNA processing were no more effective than any other class of antibiotics at suppressing resistance development. However, the unrelated antimicrobials FUS and RIF were particularly effective at preventing the emergence of LZD resistance, prolonging the selection window from 5 to 25 days. The enhanced suppressive effect of FUS and RIF on the development of LZD resistance was lost in a recA-deficient host, suggesting that these drugs affect recA-dependent recombination. Furthermore, FUS and RIF were shown to be effective inhibitors of homologous recombination of a plasmid into the staphylococcal chromosome. We suggest that RIF or FUS in combination with LZD may have a role in preventing the emergence of LZD resistance.
2025, Journal of Histochemistry and Cytochemistry
Our previous studies indicated that YIGSR-A99 peptides chemically conjugated to fibrin hydrogel (FH) and applied to wounded submandibular gland (SMG) in vivo, formed new organized salivary tissue, whereas wounded SMG treated with FH alone... more
Our previous studies indicated that YIGSR-A99 peptides chemically conjugated to fibrin hydrogel (FH) and applied to wounded submandibular gland (SMG) in vivo, formed new organized salivary tissue, whereas wounded SMG treated with FH alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. While these studies indicated that damaged SMG grow and differentiate when treated with FH containing L1 peptide, they were performed only in female mice. However, there is a well-established sexual dimorphism present in mouse SMG (e.g., males develop well-differentiated granular convoluted tubules, but these structures are poorly developed in females) and little is known about how these sex differences influence wound healing events. Therefore, the goal of this study was to conduct comparative analyses of regeneration patterns in male and female mice using L 1p -FH in a wounded SMG mouse model. Particularly, we focused on sex-dependent wound healing events such as macrophage polarization, vascularization, tissue organization, and collagen deposition, and how these events affect salivary gland functioning: (
2025, Virus Research
Recombinant adeno-associated virus (rAAV) receptor binding, endocytosis, nuclear trafficking and second strand gene conversion have been described as potential rate-limiting steps in rAAV type-2 (rAAV-2) transduction. Several strategies... more
Recombinant adeno-associated virus (rAAV) receptor binding, endocytosis, nuclear trafficking and second strand gene conversion have been described as potential rate-limiting steps in rAAV type-2 (rAAV-2) transduction. Several strategies have been developed to enhance rAAV-2 intracellular trafficking and gene conversion in an attempt to increase the efficiency of this virus as a gene therapy vector. To this end, the current study has investigated novel methods for augmenting rAAV transduction by enhancing endocytosis of rAAV-2. A selective trypsinization assay demonstrated that the abundance of internalized rAAV ssDNA was increased only in cells treated with both pyrrolidinedithiocarbonate (PDTC) and a genotoxic agent. Treating cells with each of these agents alone had no effect on rAAV endocytosis in comparison to controls. To investigate the mechanisms of this synergistic effect on rAAV transduction, the involvement of Rac1 protein was evaluated. Inhibition of the Rac1 pathway by expression of a dominant negative mutant of Rac1 (N17Rac1) decreased rAAV transduction. In contrast, expression of a dominant active form of Rac1 (V12Rac1) alone mimicked the up-regulated response seen in the presence of PDTC and genotoxic agents. These studies provide potential insights into the importance of the Rac1 pathway to enhance uptake of rAAV-2.
2025, The Journal of Clinical Endocrinology & Metabolism
The steroid 21-hydroxylase deficiency (21OHD) is the most frequent cause of congenital adrenal hyperplasia. We have characterized the disease-causing mutations in the 21-hydroxylase genes of 63 patients with salt-wasting congenital... more
The steroid 21-hydroxylase deficiency (21OHD) is the most frequent cause of congenital adrenal hyperplasia. We have characterized the disease-causing mutations in the 21-hydroxylase genes of 63 patients with salt-wasting congenital adrenal hyperplasia from a Chilean population of Hispanic origin, a group that has been scarcely evaluated. Using allele-specific PCR, lesions were identified in 97 chromosomes out of 126 tested (77%). The most frequent findings were the gene deletion or large gene conversion (LGC) ϭ 22.9%, I2 splice ϭ 19%, R357W ϭ 12.7%, and Q319X ϭ 10.5%. We did not find alleles with the mutation F308insT and we found three alleles with the cluster E6. The frequency of the point mutation R357W was at
2025, PLOS Genetics
The human X and Y chromosomes are heteromorphic but share a region of homology at the tips of their short arms, pseudoautosomal region 1 (PAR1), that supports obligate crossover in male meiosis. Although the boundary between... more
The human X and Y chromosomes are heteromorphic but share a region of homology at the tips of their short arms, pseudoautosomal region 1 (PAR1), that supports obligate crossover in male meiosis. Although the boundary between pseudoautosomal and sex-specific DNA has traditionally been regarded as conserved among primates, it was recently discovered that the boundary position varies among human males, due to a translocation of ~110 kb from the X to the Y chromosome that creates an extended PAR1 (ePAR). This event has occurred at least twice in human evolution. So far, only limited evidence has been presented to suggest this extension is recombinationally active. Here, we sought direct proof by examining thousands of gametes from each of two ePAR-carrying men, for two subregions chosen on the basis of previously published male X-chromosomal meiotic double-strand break (DSB) maps. Crossover activity comparable to that seen at autosomal hotspots was observed between the X and the ePAR borne on the Y chromosome both at a distal and a proximal site within the 110-kb extension. Other hallmarks of classic recombination hotspots included evidence of transmission distortion and GC-biased gene conversion. We observed good correspondence between the male DSB clusters and historical recombination activity of this region in the X chromosomes of females, as ascertained from linkage disequilibrium analysis; this suggests that this region is similarly primed for crossover in both male and female germlines, although sex-specific differences may also exist. Extensive resequencing and inference of ePAR haplotypes, placed in the framework of the Y phylogeny as ascertained by both Y microsatellites and single nucleotide polymorphisms, allowed us to estimate a minimum rate of crossover over the entire ePAR region of 6-fold greater than genome average, comparable with pedigree estimates of PAR1 activity generally. We conclude ePAR very likely contributes to the critical crossover function of PAR1.
2025, Microbial Cell
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes... more
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
2025, Journal of Bacteriology
Gene conversion, defined as the nonreciprocal transfer of DNA, is one result of homologous recombination. Three steps in recombination could give rise to gene conversion: (i) DNA synthesis for repair of the degraded segment, (ii) Holliday... more
Gene conversion, defined as the nonreciprocal transfer of DNA, is one result of homologous recombination. Three steps in recombination could give rise to gene conversion: (i) DNA synthesis for repair of the degraded segment, (ii) Holliday junction migration, leading to heteroduplex formation, and (iii) repair of mismatches in the heteroduplex. There are at least three proteins (RuvAB, RecG, and RadA) that participate in the second step. Their roles have been studied for homologous recombination, but evidence of their relative role in gene conversion is lacking. In this work, we showed the effect on gene conversion of mutations in ruvB , recG , and radA in Rhizobium etli , either alone or in combination, using a cointegration strategy previously developed in our laboratory. The results indicate that the RuvAB system is highly efficient for gene conversion, since its absence provokes smaller gene conversion segments than those in the wild type as well as a shift in the preferred posit...
2025, Cogent Food & Agriculture
This study aimed to elucidate chloroplast structure of the wild plant Commiphora gileadensis growing in Saudi arabia and to compare it with that of the same species grown in oman. The the two versions exhibited distinct cycles of... more
This study aimed to elucidate chloroplast structure of the wild plant Commiphora gileadensis growing in Saudi arabia and to compare it with that of the same species grown in oman. The the two versions exhibited distinct cycles of contraction and expansion, particularly in the small single copy and inverted repeat regions. These variations are attributed to ~1200 genetic changes, including SnPs and indels, predominantly occurring in the genic region. of these mutations, 165 are transitions and 535 are transversions. nine frameshift mutations were identified in genes encoding dna-dependent Rna polymerase (e.g. rpoC2 and rpoC1), protease (e.g. clpP), and nadh dehydrogenase (e.g. ndhD and ndhA). Mutations in these crucial genes suggest the potential occurrence of heteroplasmy in the chloroplasts from the two origins. Several essential genes were uniquely present in the Saudi chloroplast, while others were unique to the omani chloroplast. These chloroplast genes are involved in self-replication and photosynthesis. We hypothesize that the genetic divergence between the two chloroplastsresults from exposure to evolutionary forces. These genetic differences are compensatory, as some genes may complement the functions of the missing ones. elucidating the genomic architecture of chloroplasts provides insights into the interplay of ecological determinants that shape the phylogenetic affinities among plant taxa.
2025, Molecular Cell
have suggested that both chromosomal position and protein factors influence the likelihood of instability. However, mounting evidence suggests that the repeating DNA itself is causative.
2025, BMC Evolutionary Biology
Background Routine trichromatic color vision is a characteristic feature of catarrhines (humans, apes and Old World monkeys). This is enabled by L and M opsin genes arrayed on the X chromosome and an autosomal S opsin gene. In non-human... more
Background Routine trichromatic color vision is a characteristic feature of catarrhines (humans, apes and Old World monkeys). This is enabled by L and M opsin genes arrayed on the X chromosome and an autosomal S opsin gene. In non-human catarrhines, genetic variation affecting the color vision phenotype is reported to be absent or rare in both L and M opsin genes, despite the suggestion that gene conversion has homogenized the two genes. However, nucleotide variation of both introns and exons among catarrhines has only been examined in detail for the L opsin gene of humans and chimpanzees. In the present study, we examined the nucleotide variation of gibbon (Catarrhini, Hylobatidae) L and M opsin genes. Specifically, we focused on the 3.6~3.9-kb region that encompasses the centrally located exon 3 through exon 5, which encode the amino acid sites functional for the spectral tuning of the genes. Results Among 152 individuals representing three genera (Hylobates, Nomascus and Symphala...
2025, Annals of Hematology
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or... more
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2025, Journal of Molecular Evolution
Two highly abundant satellite DNAs comprise 36% of the Tenebrio obscurus (Tenebrionidae, Coleoptera) genome. They are designated as satellite I and satellite II with the monomer length of 344 and 142 base pairs (bp), respectively. Both... more
Two highly abundant satellite DNAs comprise 36% of the Tenebrio obscurus (Tenebrionidae, Coleoptera) genome. They are designated as satellite I and satellite II with the monomer length of 344 and 142 base pairs (bp), respectively. Both satellites differ in their nucleotide (nt) sequences, but the frequency of point mutations, well-conserved length of monomer variants, stretches of shared mutations characteristic for the process of gene conversion, and distribution of both satellites in regions of centromeric heterochromatin of all chromosomes indicate that the same evolutionary processes act on both of them with the same, or similar, rate. While satellite I shares no sequence similarity with any other known nt sequence, satellite II is 79.7% homologous with the highly abundant satellite from closely related Tenebrio molitor. Difference in the frequency of point mutations and absence of shared mutations indicating gene conversion strongly suggest that in these two closely related species mutational processes affecting satellite DNAs seem to be changed. Retarded electrophoretic mobility, due to sequence-induced curvature of DNA helix axis, was observed for T. obscurus satellite II, but not for satellite I. Although evolutionary processes act with different rates in T. obscurus and T. molitor satellites the monomer length and sequence-induced curvature are well preserved in both 142-bp satellites, as well as in, at the nt sequence level completely divergent, Palorus ratzeburgii (Tenebrionidae) satellite, indicating potential importance of these parameters in their evolution.
2025, Journal of Molecular Evolution
Aromatase cytochrome P450 (P450arom), the enzyme that catalyzes estrogen synthesis, is required for successful reproduction and is encoded by a single copy gene (CYP19) in most mammals. However, pigs and their distant suiform relatives... more
Aromatase cytochrome P450 (P450arom), the enzyme that catalyzes estrogen synthesis, is required for successful reproduction and is encoded by a single copy gene (CYP19) in most mammals. However, pigs and their distant suiform relatives the peccaries experienced CYP19 duplication. Here, the evolutionary origin of CYP19 duplication, and the evolution of the gene paralogs, was explored further in collared peccaries (Pecari tayassu). Exons IV and V, and the intervening intron, representing duplicated CYP19 genes, were cloned and sequenced from collared peccary, pig, and hippopotamus. Sequence alignment and analysis identified a gene conversion in collared peccary with a breakpoint 102 base pairs (bp) upstream of exon V. Phylogenetic analyses of nucleotide and amino acid sequence upstream of the breakpoint supported a tree in which one peccary sequence was orthologous with the porcine gonadal gene. Cloning and sequencing of tissue transcripts, using reverse-transcriptase polymerase chain reaction techniques (RT-PCR), confirmed that the gonadal ortholog was expressed in collared peccary testis. Orthology of the other genomic sequence with the porcine placental gene was not resolved, but its placenta-specific expression in collared peccary was confirmed by similar transcript analysis. Immunoblot and enzyme activity in collared peccary testes demonstrated much lower levels of P450arom than in pig testis. Collared peccary placental P450arom expression also seemed much lower than pigs. Thus, suiform CYP19 genes arose from an ancestral duplication that has maintained gonad-and placenta-specific expression, but at lower levels in peccaries than pigs, perhaps facilitating the emergence of different reproductive strategies as Suiformes diverged and evolved.
2025, Plant Signaling & Behavior
2025, BMC Evolutionary Biology
Background: CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted... more
Background: CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/ dS, or ω) >1. Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid residues located in extracellular domains of the receptor protein products. Conclusions: These results suggest that amino acid residues present in intracellular and membrane-bound domains are more selectively constrained for functional signal transduction and homo-or heterodimerization, whereas amino acid residues in extracellular domains of these receptor proteins evolve more quickly, perhaps due to heightened selective pressure resulting from ligand-binding and pathogen interactions of extracellular domains.
2025, Journal of Bacteriology
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene... more
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains fo...
2025, Immunogenetics
It is generally assumed that the different mammalian IgG isotypes have developed during evolution by duplications of a common ancestor gamma heavy chain constant region gene (IGHG). In contrast to other species studied so far, which... more
It is generally assumed that the different mammalian IgG isotypes have developed during evolution by duplications of a common ancestor gamma heavy chain constant region gene (IGHG). In contrast to other species studied so far, which express between one and four IGHG genes, the horse (Equus caballus) genome contains six IGHG genes, and it has been postulated that they all can be expressed. For determination of the evolutionary history of the six horse IGHG genes, genomic DNA and cDNA of the IGHG genes were sequenced. The structure of these genes with reference to exons and introns was determined. Comparison of the deduced amino acid sequences of the horse IGHG genes revealed the greatest divergences in the hinge regions, and in the proximal CH2 domains. A phylogenetic comparison of the amino acid sequences of the six horse IGHG genes to those of other species shows that the horse IGHG genes form a distinct cluster. This indicates that the mammalian species included in this study probably share only one common ancestor IGHG gene with the horse. The six horse IGHG genes probably then evolved by gene duplication after species separation. In addition, various segmental ex-changes were found between the horse IGHG genes, which might be the result of unequal crossing over and/or gene conversion events during the evolution of the six horse IGHG genes. The nucleotide sequence data reported in this paper have been assigned the EMBL/GenBank accession numbers: AJ300675,
2025, PLOS Genetics
In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele... more
In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent doublestrand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction.
2025, Nucleic Acids Research
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is... more
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent repli-cation tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.
2025, Molecular and Biochemical Parasitology
2025, Ecology and Evolution
2025, Molecular and Biochemical Parasitology
A complex of high molecular mass proteins (PfRhopH) of the human malaria parasite Plasmodium falciparum induces host protective immunity and therefore is a candidate for vaccine development. Understanding the level of polymorphism and the... more
A complex of high molecular mass proteins (PfRhopH) of the human malaria parasite Plasmodium falciparum induces host protective immunity and therefore is a candidate for vaccine development. Understanding the level of polymorphism and the evolutionary processes is important for advancements in both vaccine design and knowledge of the evolution of cell invasion in this parasite. In the present study, we sequenced the entire open reading frames of seven genes encoding the proteins of the PfRhopH complex (rhoph2, rhoph3, and five rhoph1/clag gene paralogs). We found that four rhoph1/clag genes (clag2, 3.1, 3.2, and 8) were highly polymorphic. Amino acid substitutions and indels are predominantly clustered around amino acid positions 1000-1200 of these four rhoph1/clag genes. An excess of nonsynonymous substitutions over synonymous substitutions was detected for clag8 and 9, indicating positive selection. The McDonald-Kreitman test with a Plasmodium reichenowi orthologous sequence also supports positive selection on clag8. Based on the ratio of interspecific genetic distance to intraspecific distance, the time to the most recent common ancestor of the clag2 and 8 polymorphisms was estimated to be 1.89 and 0.87 million years ago, respectively, assuming divergence of P. falciparum and P. reichenowi 6 million years ago. In addition to a copy number polymorphism, gene conversion events were detected for the rhoph1/clag genes on chromosome 3, which likely play a role in increasing the diversity of each locus. Our results indicate that a high diversity of the PfRhopH1/Clag multigene family is maintained by diversifying selection forces over a considerably long period.
2025, Seminars in Cancer Biology
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization... more
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization of a considerable number of rearrangement breakpoints has now been accomplished at the nucleotide sequence level, thereby providing an invaluable resource for the detailed study of the mutational mechanisms which underlie genomic recombination events. A better understanding of these mutational mechanisms is vital for improving the design of mutation detection strategies. At least five categories of mutational mechanism are known to give rise to genomic rearrangements: (i) homologous recombination including non-allelic homologous recombination (NAHR), gene conversion, single strand annealing (SSA) and break-induced replication (BIR), (ii) non-homologous end joining (NHEJ), (iii) microhomology-mediated replication-dependent recombination (MMRDR), (iv) long interspersed element-1 (LINE-1 or L1)-mediated retrotransposition and (v) telomere healing. Focussing on the first three of these general mechanisms, we compare and contrast their hallmark characteristics, and discuss the role of various local DNA sequence features (e.g. recombination-promoting motifs, repetitive sequences and sequences capable of non-B DNA formation) in mediating the recombination events that underlie gross genomic rearrangements. Finally, we explore how studies both at the level of the gene (using the neurofibromatosis type-1 gene as an example) and the whole genome (using data derived from cancer genome sequencing studies) are shaping our understanding of the impact of genomic rearrangements as a cause of human genetic disease.
2025, Nature Reviews Genetics
A recombination event between non-allelic sequences on non-sister chromatids of a pair of homologous chromosomes. The process by which segments of DNA are exchanged between two DNA duplexes that share high sequence similarity.
2025, Human Mutation
A variety of DNA sequence motifs including inverted repeats, minisatellites, and the χ recombination hotspot, have been reported in association with gene conversion in human genes causing inherited disease. However, no methodical... more
A variety of DNA sequence motifs including inverted repeats, minisatellites, and the χ recombination hotspot, have been reported in association with gene conversion in human genes causing inherited disease. However, no methodical statistically-based analysis has been performed to formalize these observations. We have performed an in silico analysis of the DNA sequence tracts involved in 27 non-overlapping gene conversion events in 19 different genes reported in the context of inherited disease. We found that gene conversion events tend to occur within (C+G)and CpG-rich regions and that sequences with the potential to form non-B-DNA structures, and which may be involved in the generation of double-strand breaks that could in turn serve to promote gene conversion, occur disproportionately within maximal converted tracts and/or short flanking regions. Maximal converted tracts were also found to be enriched (p<0.01) in a truncated version of the χ-element (a TGGTGG motif), immunoglobulin heavy chain class switch repeats, translin target sites and several novel motifs including (or overlapping) the classical meiotic recombination hotspot, CCTCCCCT. Finally, gene conversions tend to occur in genomic regions that have the potential to fold into stable hairpin conformations. These findings support the concept that recombination-inducing motifs, in association with alternative DNA conformations, can promote recombination in the human genome.
2025, Nature communications
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear.... more
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provi...
2025, Current Genetics
The influence of the 2 ~tm plasmid on homologous recombination in the right arm of chromosome XV of the yeast Saccharomyces cerevisiae has been examined. No differences between spontaneous mitotic recombination rates in [cir ~ and [cir +]... more
The influence of the 2 ~tm plasmid on homologous recombination in the right arm of chromosome XV of the yeast Saccharomyces cerevisiae has been examined. No differences between spontaneous mitotic recombination rates in [cir ~ and [cir +] derivatives of two yeast diploid tester strains were detected. In the course of analysis an unusually high coincident conversion frequency at ADE2, HIS3, and two RFLP loci adjacent to ADE2, was observed. The character of coincident homozygotization of linked markers argues for a "break-and-replicate" mechanism underlying the coincident conversion events.
2025, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Berberine, a medically important isoquinoline alkaloid, was tested for the presence of genotoxic, mutagenic and recombinogenic activities in microorganisms. This alkaloid did not show genotoxic activity with or without metabolic... more
Berberine, a medically important isoquinoline alkaloid, was tested for the presence of genotoxic, mutagenic and recombinogenic activities in microorganisms. This alkaloid did not show genotoxic activity with or without metabolic activation in the SOS chromotest. It was also unable to induce significant cytotoxic, mutagenic or recombinogenic effects during treatments performed under nongrowth conditions. However, in dividing cells, this alkaloid induced important cytotoxic and cytostatic effects in proficient and repair-deficient Saccharomyces cerevisiae strains. Among the different repair-deficient mutants examined, a mutant blocked in the DNA strand-break repair pathway (rad52-1) was found to be the most sensitive to the cytotoxic effect of berberine. A triple mutant blocked in the excision (rad2-6), in the mutagenic (rad6-1) and in the recombinogenic (rad52-1) repair pathways demonstrated the same sensitivity as the single rad52-1 mutant. In dividing cells, the induction of frameshift and mitochondrial mutations, as well as crossing over, showed that this alkaloid is not a potent mutagenic agent. The possible implication of DNA topoisomerases in berberine toxicity mechanisms is discussed. Among the various groups of natural products the isoquinoline alkaloids are very numerous and have been isolated from a variety of plant families such as Berberidaceae, Magnoliaceae, Menis-
2025, Journal of Computational Biology
Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or... more
Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or between species (reticulation due to lateral gene transfer and hybrid speciation). The central algorithmic problems are to reconstruct a plausible history of mutations and non-tree-like events, or to determine the minimum number of such events needed to derive a given set of binary sequences, allowing one mutation per site. Meiotic recombination, reticulation and recurrent mutation can cause conflict or incompatibility between pairs of sites (or characters) of the input. Previously, we used "conflict graphs" and "incompatibility graphs" to compute lower bounds on the minimum number of recombination nodes needed, and to efficiently solve constrained cases of the minimization problem. Those results exposed the structural and algorithmic importance of the non-trivial connected components of those two graphs. In this paper, we more fully develop the structural importance of non-trivial connected components of the incompatibility and conflict graphs, proving a general decomposition theorem (first presented in Gusfield and Bansal 2005) for phylogenetic networks. The decomposition theorem depends only on the incompatibilities in the input sequences, and hence applies to phylogenetic networks of all types, and to any phenomena that causes pairwise incompatibilities. More generally, the proof of the decomposition theorem exposes a maximal embedded tree structure that exists in the network when the sequences cannot be derived on a perfect phylogenetic tree. This extends the theory of perfect phylogeny in a natural and important way. The proof is constructive and leads to a polynomial-time algorithm to find the unique underlying maximal tree structure. We next examine and fully solve the major open question from : Is it true that for every input there must be a fully decomposed phylogenetic network that minimizes the number of recombination nodes used, over all phylogenetic networks for the input. We previously conjectured that the answer is yes. In this paper we show that the answer in is no, both for the case that only single-crossover recombination is allowed, and also for the case that unbounded multiple-crossover recombination is allowed. The latter case also resolves a conjecture recently stated in in the context of general reticulation networks. Although the conjecture from Gusfield and Bansal ( ) is disproved in general, we show that the answer to the conjecture is yes in several natural special cases, and establish necessary combinatorial structure that counterexamples to the conjecture must posses. We also show that counterexamples to the conjecture are rare (for the case of single-crossover recombination) in simulated data.
2025, Journal of Computational Biology
Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several... more
Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several critical applied problems. The most important example is "association mapping" in populations, which is widely hoped to help find genes that influence genetic diseases . Hence, a great deal of recent attention has focused on problems of inferring the historical derivation of sequences in populations when both mutations and recombinations have occurred. In the algorithms literature, most of that recent work has been directed to single-crossover recombination. However, gene-conversion is an important, and more common, form of (twocrossover) recombination which has been much less investigated in the algorithms literature. In this paper we explicitly incorporate gene-conversion into discrete methods to study historical recombination. We are concerned with algorithms for identifying and locating the extent of historical crossing-over and gene-conversion (along with single-nucleotide mutation), and problems of constructing full putative histories of those events. The novel technical issues concern the incorporation of gene-conversion into recently developed discrete methods that compute lower and upper-bound information on the amount of needed recombination without geneconversion. We first examine the most natural extension of the lower bound methods from , showing that the extension can be computed efficiently, but that this extension can only yield weak lower bounds. We then develop additional ideas that lead to higher lower bounds, and show how to solve, via integer-linear programming, a more biologically realistic version of the lower bound problem. We also show how to compute effective upper bounds on the number of needed singlecrossovers and gene-conversions, along with explicit networks showing a putative history of mutations, single-crossovers and gene-conversions. Both lower and upper bound methods can handle data with missing entries, and the upper bound method can be used to infer missing entries with high accuracy. We validate the significance of these methods by showing that they can be effectively used to distinguish simulation-derived sequences generated without gene-conversion from sequences that were generated with gene-conversion. We apply the methods to recently studied sequences of Arabidopsis thaliana, identifying many more regions in the sequences than were previously identified , where gene-conversion may have played a significant role. Demonstration software is available at wwwcsif.cs.ucdavis.edu/∼gusfield.
2025, Journal of Computer and System Sciences
Phylogenetic networks are models of sequence evolution that go beyond trees, allowing biological operations that are not consistent with tree-like evolution. One of the most important of these biological operations is (single-crossover)... more
Phylogenetic networks are models of sequence evolution that go beyond trees, allowing biological operations that are not consistent with tree-like evolution. One of the most important of these biological operations is (single-crossover) recombination between two sequences. An established problem is to find a phylogenetic network that derives an input set of sequences, minimizing the number of recombinations used. No efficient, general algorithm is known for that problem. An efficient algorithm does exist for the problem when the network is constrained to be a "galled-tree", and the ancestral sequence for the galled-tree is specified in advance . However, the more biologically realistic case is that no ancestral sequence is known in advance, and the only previous algorithmic solution for that case takes exponential time. In this paper we give an efficient solution to the galled-tree problem when no ancestral sequence is known in advance, and show that the solution produced has very strong global optimality properties. We also indicate how these results generalize to other complex biological phenomena such as geneconversion, lateral gene transfer, hybrid speciation, and back and recurrent mutation.
2025, Journal of Computational Biology
Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several... more
Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several critical applied problems. The most important example is "association mapping" in populations, which is widely hoped to help find genes that influence genetic diseases . Hence, a great deal of recent attention has focused on problems of inferring the historical derivation of sequences in populations when both mutations and recombinations have occurred. In the algorithms literature, most of that recent work has been directed to single-crossover recombination. However, gene-conversion is an important, and more common, form of (twocrossover) recombination which has been much less investigated in the algorithms literature. In this paper we explicitly incorporate gene-conversion into discrete methods to study historical recombination. We are concerned with algorithms for identifying and locating the extent of historical crossing-over and gene-conversion (along with single-nucleotide mutation), and problems of constructing full putative histories of those events. The novel technical issues concern the incorporation of gene-conversion into recently developed discrete methods that compute lower and upper-bound information on the amount of needed recombination without geneconversion. We first examine the most natural extension of the lower bound methods from , showing that the extension can be computed efficiently, but that this extension can only yield weak lower bounds. We then develop additional ideas that lead to higher lower bounds, and show how to solve, via integer-linear programming, a more biologically realistic version of the lower bound problem. We also show how to compute effective upper bounds on the number of needed singlecrossovers and gene-conversions, along with explicit networks showing a putative history of mutations, single-crossovers and gene-conversions. Both lower and upper bound methods can handle data with missing entries, and the upper bound method can be used to infer missing entries with high accuracy. We validate the significance of these methods by showing that they can be effectively used to distinguish simulation-derived sequences generated without gene-conversion from sequences that were generated with gene-conversion. We apply the methods to recently studied sequences of Arabidopsis thaliana, identifying many more regions in the sequences than were previously identified , where gene-conversion may have played a significant role. Demonstration software is available at wwwcsif.cs.ucdavis.edu/∼gusfield.
2025, Journal of Computational Biology
Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or... more
Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or between species (reticulation due to lateral gene transfer and hybrid speciation). The central algorithmic problems are to reconstruct a plausible history of mutations and non-tree-like events, or to determine the minimum number of such events needed to derive a given set of binary sequences, allowing one mutation per site. Meiotic recombination, reticulation and recurrent mutation can cause conflict or incompatibility between pairs of sites (or characters) of the input. Previously, we used "conflict graphs" and "incompatibility graphs" to compute lower bounds on the minimum number of recombination nodes needed, and to efficiently solve constrained cases of the minimization problem. Those results exposed the structural and algorithmic importance of the non-trivial connected components of those two graphs. In this paper, we more fully develop the structural importance of non-trivial connected components of the incompatibility and conflict graphs, proving a general decomposition theorem (first presented in Gusfield and Bansal 2005) for phylogenetic networks. The decomposition theorem depends only on the incompatibilities in the input sequences, and hence applies to phylogenetic networks of all types, and to any phenomena that causes pairwise incompatibilities. More generally, the proof of the decomposition theorem exposes a maximal embedded tree structure that exists in the network when the sequences cannot be derived on a perfect phylogenetic tree. This extends the theory of perfect phylogeny in a natural and important way. The proof is constructive and leads to a polynomial-time algorithm to find the unique underlying maximal tree structure. We next examine and fully solve the major open question from : Is it true that for every input there must be a fully decomposed phylogenetic network that minimizes the number of recombination nodes used, over all phylogenetic networks for the input. We previously conjectured that the answer is yes. In this paper we show that the answer in is no, both for the case that only single-crossover recombination is allowed, and also for the case that unbounded multiple-crossover recombination is allowed. The latter case also resolves a conjecture recently stated in in the context of general reticulation networks. Although the conjecture from Gusfield and Bansal ( ) is disproved in general, we show that the answer to the conjecture is yes in several natural special cases, and establish necessary combinatorial structure that counterexamples to the conjecture must posses. We also show that counterexamples to the conjecture are rare (for the case of single-crossover recombination) in simulated data.
2025, Molecular Biology and Evolution
We investigated the evolution of 6 genes from the Treponema pallidum repeat (tpr) gene family, which encode potential virulence factors and are assumed to have evolved through gene duplication and gene conversion events. The 6 loci (tprC,... more
We investigated the evolution of 6 genes from the Treponema pallidum repeat (tpr) gene family, which encode potential virulence factors and are assumed to have evolved through gene duplication and gene conversion events. The 6 loci (tprC, D, G, J, I, and K) were sequenced and analyzed in several members of the genus Treponema, including the 3 subspecies of human T. pallidum (T. pallidum subsp. pallidum, pertenue, and endemicum), Treponema paraluiscuniculi (rabbit syphilis), and the unclassified Fribourg-Blanc (simian) isolate. Phylogenetic methods, recombination analysis, and measures of nucleotide diversity were used to investigate the evolutionary history of the tpr genes. Numerous instances of gene conversion were detected by all 3 methods including both homogenizing gene conversion that involved the entire length of the sequence as well as site-specific conversions that affected smaller regions. We determined the relative age and directionality of the gene conversion events whenever possible. Our data are also relevant to a discussion of the evolution of the treponemes themselves. Higher levels of variation exist between the human subspecies than within them, supporting the classification of the human treponemes into 3 subspecies. In contrast to published theories, the divergence and diversity of T. pallidum subsp. pertenue relative to the other subspecies does not support a much older origin of yaws at the emergence of modern human, nor is the level of divergence seen in T. pallidum subsp. pallidum consistent with a very recent (,500 years) origin of this subspecies. In general, our results demonstrate that intragenomic recombination has played a significant role in the evolution of the studied tpr genes and emphasize that efforts to infer evolutionary history of the treponemes can be complicated if past recombination events are not recognized.
2025, Microbial Cell
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes... more
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
2025, The EMBO Journal
aspects of each model: the yeast ribosomal DNA (rDNA) Departments of 1 Molecular Biophysics and Biochemistry and locus undergoes frequent mitotic and meiotic sister
2025, Immunogenetics
HLA-F represents one of the nonclassical MHC class I molecules in humans. Its main characteristics involve low levels of polymorphism in combination with a restricted tissue distribution. This signals that the gene product executes a... more
HLA-F represents one of the nonclassical MHC class I molecules in humans. Its main characteristics involve low levels of polymorphism in combination with a restricted tissue distribution. This signals that the gene product executes a specialised function, which, however, is still poorly understood. Relatively little is known about the evolutionary equivalents of this gene in nonhuman primates, especially with regard to population data. Here we report a comparative genetic analysis of the orthologous genes of HLA-F in various great ape, Old World monkey (OWM), and New World monkey (NWM) species. HLA-F-related transcripts were found in all subjects studied. Low levels of polymorphism were encountered, although the length of the predicted gene products may vary. In most species, one or two transcripts were discovered, indicating the presence of only one active F-like gene per chromosome. An exception was provided by a New World monkey species, namely, the common marmoset. In this species, the gene has been subject to duplication, giving rise to up to six F-like transcripts per animal. In humans, great apes, and OWM, and probably the majority of the NWM species, the evolutionary equivalents of the HLA-F gene experienced purifying selection. In the marmoset, however, the gene was initially duplicated, but the expansion was subjected afterwards to various mechanisms of genetic inactivation, as evidenced by the presence of pseudogenes and an array of genetic artefacts in a section of the transcripts.
2025, Genome Research
Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis... more
Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis machinery and as such are highly conserved and normally present in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats located at a single locus on chromosome XII. Stability and sequence homogeneity of the rDNA array is essential for function, and this is achieved primarily by the mechanism of gene conversion. Detecting variation within these arrays is extremely problematic due to their large size and repetitive structure. In an attempt to address this, we have analyzed over 35 Mbp of rDNA sequence obtained from whole-genome shotgun sequencing (WGSS) of 34 strains of S. cerevisiae. Contrary to expectation, we find significant rDNA sequence variation exists within individual genomes. Many of the detecte...
2025, Journal of Bacteriology
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene... more
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains fo...
2025, Molecular Genetics And Genomics
Unmethylated DNA heteroduplexes with a large single stranded loop in one strand have been prepared from separated strands of DNA from two different strains of bacteriophage 2, one of which has a ~ 800 base pair IS/ insertion in the cI... more
Unmethylated DNA heteroduplexes with a large single stranded loop in one strand have been prepared from separated strands of DNA from two different strains of bacteriophage 2, one of which has a ~ 800 base pair IS/ insertion in the cI gene. The results of transfections with these heteroduplexes into wild-type and mismatch repair deficient bacteria indicate that such large non-homologies are not repaired by the Escherichia coli mismatch repair system. However, the results do suggest that some process can act to repair such large non-homologies in heteroduplex DNA. Transfections of a series of recombination and excision repair deficient mutants suggest that known excision or recombination repair systems of E. eoli are not responsible for the repair. Repair of large non-homologies may play a role in gene conversion involving large insertion or deletion mutations.
2025, Molecular and General Genetics MGG
It has been established that very short patch (VSP) mismatch repair, depending in Escherichia coli on MutL, MutS and Dcm functions, is responsible for the hyper-recombinogenic effect of a class of genetic markers. We show that VSP repair... more
It has been established that very short patch (VSP) mismatch repair, depending in Escherichia coli on MutL, MutS and Dcm functions, is responsible for the hyper-recombinogenic effect of a class of genetic markers. We show that VSP repair requires the presence of the complete DNA polymerase I enzyme. The absence of endonuclease activities involved in the repair of base-loss sites, Nth, Nfo and Xth, does not affect VSP repair. Implications for the mechanism of the VSP repair are discussed.
2025, Genomics
The length variability of four human interstitial telomeric sequences (ITs) is described. Three of the ITs contain short telomeric stretches ranging between 53 and 84 bp and are localized in 21q22, 2q31, and 7q36; the fourth IT derives... more
The length variability of four human interstitial telomeric sequences (ITs) is described. Three of the ITs contain short telomeric stretches ranging between 53 and 84 bp and are localized in 21q22, 2q31, and 7q36; the fourth IT derives from the subtelomeric domain of chromosome 6p and contains a tract of a few hundred basepairs of exact and degenerate repeats. Using primers flanking the repeats, we amplified the genomic DNA from unrelated individuals and from family members, and we found that all the loci are polymorphic. At the 21q22 IT locus, two equally frequent alleles were found, while the number of alleles at the 2q31, 7q36, and 6pter IT loci was 8, 6, and 4, respectively. Sequence analysis revealed that in the three loci containing short ITs the alleles differ from one another for multiples of the hexanucleotide; it is likely that the mechanism leading to the polymorphism is DNA polymerase slippage. These loci were also unstable in gastric tumor cells characterized by microsatellite instability. At the 6pter IT locus, the four alleles range in length from about 500 to about 700 bp; this variability is probably due to unequal exchange or gene conversion. Our data indicate that stretches of exact internal telomeric repeats can be highly unstable, like microsatellites with shorter units, and that they can be useful polymorphic markers for linkage analysis, for forensic applications, and for the detection of genetic instability in tumors.
2025, Genetics
C4 and CYPZl are two adjacent, but functionally unrelated genes residing in the middle of the mammalian major histocompatibility complex (Mhc). T h e C4 gene codes for the fourth component of the complement cascade, whereas the CYP2l gene... more
C4 and CYPZl are two adjacent, but functionally unrelated genes residing in the middle of the mammalian major histocompatibility complex (Mhc). T h e C4 gene codes for the fourth component of the complement cascade, whereas the CYP2l gene specifies an enzyme (cytochrome P450c21) of the glucocorticoid and mineralocorticoid pathways. T h e genes occur frequently in multiple copies on a single chromosome arranged in the order C4 . . . CYPPl . . . C 4 . . . CYP21. The unit of duplication (a module) is the C4-CYP21 gene pair. We sequenced the flanking regions of the C4-CYP21 modules and the intermodular regions of the chimpanzee, gorilla, and orangutan, as well as the intermodular region of an Old World monkey, the pigtail macaque. By aligning the sequences, we could identify the duplication breakpoints in these species. T h e breakpoint turned out to be at exactly the same position as that found previously in humans. T h e sequences flanking paralogous genes in the same species were found to be more similar to one another than sequences flanking orthologous genes in different species. We interpret these results as indicating that the original (primigenial) duplication occurred before the separation of apes from Old World monkeys more than 23 million years ago. The nature of the sequence at the breakpoint suggests that the duplication occurred by nonhomologous recombination. Since then, the C4-CYP21 haplotypes have been expanding and contracting by homologous crossing over which has homogenized the sequences in each species. We speculate that the reason for the concerted evolution of the primate C4-CYP21 region may be a requirement for the coevolution of certain components of the complement pathway, including the C4 component. We contrast the evolution of the C4-CYP21 region with that of other Mhc regions. C OMPLEMENT component 4, C4, is one of more than 20 proteins constituting the complement cascade, which is involved in defense of vertebrate bodies against pathogens. Activation of the cascade by antigen-antibody complexes or by other means leads ultimately to the assembly of lytic complexes on the cell surface, perforation of the plasma membrane, and killing of the cell (Ross 1986). Some of the activated components of the cascade are also involved in a variety of other biological functions. Cytochrome P450c2 1 (2 1-hydroxylase), CYP2 1, is an enzyme participating in the conversion of cholesterol to aldosterone or cortisol in the cortex of the vertebrate adrenal gland (MILLER 1988). In mammals, complement component 4 and cytochrome P450c21 are encoded in adjacent genes, C4 and CYP21, respectively, residing in the middle of the major histocompatibility complex, Mhc . The per haplotype number of C4 and CYP21 copies varies from species to species and also among individuals of certain species. Single C4-CYP21 haplotypes have been found in humans and others),
2025, Molecular Biology and Evolution
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescentbased approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion.... more
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescentbased approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present.
2025, Molecular biology and evolution
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion.... more
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of populat...
2025, Gene
The sequence of the mitochondrial DNA control region was examined in four species of lamprey in the genus Lethenteron. The 3'-half of the control region contains highly variable repeat sequences, showing variation in both copy number and... more
The sequence of the mitochondrial DNA control region was examined in four species of lamprey in the genus Lethenteron. The 3'-half of the control region contains highly variable repeat sequences, showing variation in both copy number and nucleotide sequence, even within local populations. Detailed analyses of the sequences of the repeats allowed us to deduce that slipped-strand mispairing during DNA replication, accompanied by a high rate of substitutions and indels, was primarily responsible for the variation in the repeats. We also found that some cases might be better explained by gene conversion, due to intermolecular recombination. Based on the observed variable nature of the mitochondrial control region, we searched for molecular markers in mitochondrial DNA, because there are few fixed genetic markers for distinguishing between Lethenteron japonicum and L. kessleri. However, we found no reliable markers in the control region. No fixed substitution was observed in intron sequences of the nuclear gene SoxD. Thus, these two species likely diverged quite recently and may possess only a limited number of fixed genetic loci.
2025, The American Journal of Human Genetics
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats... more
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.
2025, Proceedings of the National Academy of Sciences
Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct... more
Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.