Live Streaming Research Papers - Academia.edu (original) (raw)
During the past two decades, information visualisation (InfoVis) re- search has created new techniques and methods to support data- intensive analyses in science, industry and government. These have enabled a wide range of analyses tasks... more
During the past two decades, information visualisation (InfoVis) re- search has created new techniques and methods to support data- intensive analyses in science, industry and government. These have enabled a wide range of analyses tasks to be executed, with tasks varying in terms of the type and volume of data involved. However, the majority of this research has focused on static datasets, and the analysis and visualisation tasks tend to be carried out by trained expert users. In more recent years, social changes and technological advances have meant that data have become more and more dynamic, and are consumed by a wider audience. Examples of such dynamic data streams include e-mails, status updates, RSS 1 feeds, versioning systems, social networks and others. These new types of data are used by populations that are not specifically trained in information visualization. Some of these people might consist of casual users, while others might consist of people deeply involved with the data, but in both cases, they would not have received formal training in information visualization. For simplicity, throughout this dissertation, I refer to the people (casual users, novices, data experts) who have not been trained in information visualisation as non-experts.
These social and technological changes have given rise to multiple challenges because most existing visualisation models and techniques are intended for experts, and assume static datasets. Few studies have been conducted that explore these challenges. In this dissertation, with my collaborators, I address the question: Can we empower non- experts in their use of visualisation by enabling them to contribute to data stream analysis as well as to create their own visualizations?
The first step to answering this question is to determine whether people who are not trained in information visualisation and the data sciences can conduct useful dynamic analysis tasks using a visualisation system that is adapted to support their tasks. In the first part of this dissertation I focus on several scenarios and systems where different sized crowds of non-InfoVis experts users (20 to 300 and 2 000 to 700 000 people) use dynamic information visualisation to analyse dynamic data.
Another important issue is the lack of generic design principles for the visual encoding of dynamic visualization. In this dissertation I design, define and explore a design space to represent dynamic data for non-experts. This design space is structured by visual tokens representing data items that provide the constructive material for the assembly over time of different visualizations, from classic represen- tations to new ones. To date, research on visual encoding has been focused on static datasets for specific tasks, leaving generic dynamic approaches unexplored and unexploited.
In this thesis, I propose construction as a design paradigm for non- experts to author simple and dynamic visualizations. This paradigm is inspired by well-established developmental psychological theory as well as past and existing practices of visualisation authoring with tangible elements. I describe the simple conceptual components and processes underlying this paradigm, making it easier for the human computer interaction community to study and support this process for a wide range of visualizations. Finally, I use this paradigm and tangible tokens to study if and how non-experts are able to create, discuss and update their own visualizations. This study allows us to refine our previous model and provide a first exploration into how non-experts perform a visual mapping without software. In summary, this thesis contributes to the understanding of dynamic visualisation for non-expert users.