Network Capacity Research Papers - Academia.edu (original) (raw)
Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. The integration of WMNs... more
Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. The integration of WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, etc., can be accomplished through the gateway and bridging functions in the mesh routers. Mesh clients can be either stationary or mobile, and can form a client mesh network among themselves and with mesh routers. WMNs are anticipated to resolve the limitations and to significantly improve the performance of ad hoc networks, wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless metropolitan area networks (WMANs). They are undergoing rapid progress and inspiring numerous deployments. WMNs will deliver wireless services for a large variety of applications in personal, local, campus, and metropolitan areas. Despite recent advances in wireless mesh networking, many research challenges remain in all protocol layers. This paper presents a detailed study on recent advances and open research issues in WMNs. System architectures and applications of WMNs are described, followed by discussing the critical factors influencing protocol design. Theoretical network capacity and the state-of-the-art protocols for WMNs are explored with an objective to point out a number of open research issues. Finally, testbeds, industrial practice, and current standard activities related to WMNs are highlighted.
The deployment of femtocells in a macrocell network is an economical and effective way to increase network capacity and coverage. Nevertheless, such deployment is challenging due to the presence of inter-tier and intra-tier interference,... more
The deployment of femtocells in a macrocell network is an economical and effective way to increase network capacity and coverage. Nevertheless, such deployment is challenging due to the presence of inter-tier and intra-tier interference, and the ad hoc operation of femtocells. Motivated by the flexible subchannel allocation capability of OFDMA, we investigate the effect of spectrum allocation in two-tier networks,
We consider the problem of determining the maximum capacity of the media access (MAC) layer in wireless ad hoc networks. Due to spatial contention for the shared wireless medium, not all nodes can concurrently transmit packets to each... more
We consider the problem of determining the maximum capacity of the media access (MAC) layer in wireless ad hoc networks. Due to spatial contention for the shared wireless medium, not all nodes can concurrently transmit packets to each other in these networks. The maximum number of possible concurrent transmissions is, therefore, an estimate of the maximum network capacity, and depends on the MAC protocol being used. We show that for a large class of MAC protocols based on virtual carrier sensing using RTS/CTS messages, which includes the popular IEEE 802.11 standard, this problem may be modeled as a maximum Distance-2 matching ( D2EMIS) in the underlying wireless network: Given a graph G(V,E), find a set of edges E'⊆E such that no two edges in E' are connected by another edge in E. D2EMIS is NP-complete. Our primary goal is to show that it can be approximated efficiently in networks that arise in practice. We do this by focusing on an admittedly simplistic, yet natural, graph-theoretic model for ad hoc wireless networks based on disk graphs, where a node can reach all other nodes within some distance (nodes may have unequal reach distances). We show that our approximation yields good capacity bounds. Our work is the first attempt at characterizing an important "maximum" measure of wireless network capacity, and can be used to shed light on previous topology formation protocols like Span and GAF that attempt to produce "good" or "capacity-preserving" topologies, while allowing nodes to alternate between sleep and awake states. Our work shows an efficient way to compute an upper bound on maximum wireless network capacity, thereby allowing topology formation algorithms to determine how close they are to optimal. We also outline a distributed algorithm for the problem for unit disk graphs, and briefly discuss extensions of our results to: 1) different node interference models; 2) directional antennas; and 3) other transceiver connectivity structures besides disk graphs.
This paper is an introduction to survivability of WDM networks. All the main optical protection techniques proposed as far as now for the WDM layer are classified and reviewed. In particular, commonly adopted protection strategies for... more
This paper is an introduction to survivability of WDM networks. All the main optical protection techniques proposed as far as now for the WDM layer are classified and reviewed. In particular, commonly adopted protection strategies for ring and mesh networks are explained. Moreover, off-line planning of WDM networks able to support path protection is briefly introduced. Finally, an example of heuristic network-capacity optimization is presented, discussing results obtained by considering a case-study network.
For fixed quality-of-service constraints and varying channel interference, how should a mobile node in a wireless network adjust its transmitter power so that energy consumption is minimized? Several transmission schemes are considered,... more
For fixed quality-of-service constraints and varying channel interference, how should a mobile node in a wireless network adjust its transmitter power so that energy consumption is minimized? Several transmission schemes are considered, and optimal solutions are ...
This paper proposes distributed joint power and admission control algorithms for the management of interference in two-tier femtocell networks, where the newly-deployed femtocell users (FUEs) share the same frequency band with the... more
This paper proposes distributed joint power and admission control algorithms for the management of interference in two-tier femtocell networks, where the newly-deployed femtocell users (FUEs) share the same frequency band with the existing macrocell users (MUEs) using code-division multiple access (CDMA). As the owner of the licensed radio spectrum, the MUEs possess strictly higher access priority over the FUEs; thus, their quality-of-service (QoS) performance, expressed in terms of the prescribed minimum signal-to-interference-plus-noise ratio (SINR), must be maintained at all times. For the lower-tier FUEs, we explicitly consider two different design objectives, namely, throughput-power tradeoff optimization and soft QoS provisioning. With an effective dynamic pricing scheme combined with admission control to indirectly manage the cross-tier interference, the proposed schemes lend themselves to distributed algorithms that mainly require local information to offer maximized net utility of individual users. The approach employed in this work is particularly attractive, especially in view of practical implementation under the limited backhaul network capacity available for femtocells. It is shown that the proposed algorithms robustly support all the prioritized MUEs with guaranteed QoS requirements whenever feasible, while allowing the FUEs to optimally exploit the remaining network capacity. The convergence of the developed solutions is rigorously analyzed, and extensive numerical results are presented to illustrate their potential advantages.