Orbit Determination Research Papers - Academia.edu (original) (raw)

As the spacefaring community is well aware, the increasingly rapid proliferation of man-made objects in space, whether active satellites or debris, threatens the safe and secure operation of spacecraft and requires that we change the way... more

As the spacefaring community is well aware, the increasingly rapid proliferation of man-made objects in space, whether active satellites or debris, threatens the safe and secure operation of spacecraft and requires that we change the way we conduct business in space. The introduction of appropriate protocols and procedures to regulate the use of space is predicated on the availability of quantifiable and timely information regarding the behavior of resident space objects (RSO): the basis of space domain awareness (SDA). Yet despite five decades of space operations, and a growing global dependence on the services provided by space-based platforms, the population of Earth orbiting space objects is still neither rigorously nor comprehensively quantified, and the behaviors of these objects, whether directed by human agency or governed by interaction with the space environment, are inadequately characterized. In response to these challenges, the University of Arizona (UA) has recently established the Space Object Behavioral Sciences (SOBS) Division of its Defense and Security Research Institute (DSRI) with a mandate to carry out research, education, and operational support to spacecraft operators. The SOBS Division builds on UA's heritage as a world leader in space science. By way of examples, UA, with a total research portfolio exceeding 600Mperyear,operatesmorethan20astronomicaltelescopesontwocontinents,leadsNASA′s600M per year, operates more than 20 astronomical telescopes on two continents, leads NASA's 600Mperyear,operatesmorethan20astronomicaltelescopesontwocontinents,leadsNASAs800M OSIRIS-REx asteroid sample return mission, and has been deeply engaged in every US mission to Mars without exception. Key goals of the SOBS Division are to develop a capability to predict RSO behavior, extending SDA beyond its present paradigm of catalog maintenance and forensic analysis, and to arrive at a comprehensive physical understanding of non-gravitational forces that affect the motions of RSOs. Without seeking to provide a universal solution to global SDA needs, SOBS nonetheless concentrates resources to advance the state-of-the-art in astrodynamic research toward those ends. Solutions to these problems require multidisciplinary engagement that combines space surveillance data with other information, including space object databases and space environmental data, to help decision-making processes predict, detect, and quantify threatening and hazardous space domain activity. To that end, the division engages and integrates talent and resources from across the UA, including the Colleges of Science, Engineering, Optical Sciences, and Agriculture & Life Sciences. As activity ramps up over approximately the next three years, the SOBS Division will directly support the creation of timely knowledge of the space environment by drawing on a worldwide network of sensors processed through existing UA cyberinfrastructure. In addition, the SOBS Division will also provide a real-world training ground for current and future workers in the field through certificate programs and postgraduate degrees.