Peat Research Papers - Academia.edu (original) (raw)

The aim of the present study is to provide additional information about the properties and depositional environment of the Kipra lignite seam, which was deposited during the regressive stage of development of the Maritza-West basin.... more

The aim of the present study is to provide additional information about the properties and depositional environment of the Kipra lignite seam, which was deposited during the regressive stage of development of the Maritza-West basin. Petrographical and mineralogical data, along with ash yields and sulphur contents of 24 samples from a seam profile, have been used to study the vertical variation of the depositional settings during peat accumulation and subsequent coalification.The Kipra lignite is characterized by high ash yields and sulphur contents. It formed in a rheotrophic, low-lying mire with alkaline pH value. Vegetation with low preservation potential dominated within the palaeomire. During peat formation, frequent changes of the water level controlled the depositional environment. During the deposition of units 1 and 2, high water energy caused the transportation of high amounts of inorganic material into the mire, resulting in the formation of weakly gelified mineral-rich lignite. The organic matter from units 3 and 4 is characterized by enhanced gelification, which probably reflects the decreasing energy of the system. Good positive correlation between sulphur contents and the GI values was established in units 4, indicating that the gelification of the tissues was probably mainly controlled by the bacterial activity. In contrast, the gelification of the samples from unit 3 of the Kipra seam was probably governed by the redox conditions. The organic matter deposited under relatively wet conditions, in which the thermal and oxidative destruction of the tissues, was limited.A variety of major, minor and accessory minerals are present in Maritza-West lignite. The mineral composition is dominated mainly by pyrite, gypsum and calcite, and to a lesser extent limonite, quartz, kaolinite, montmorillonite, illite, chlorite and plagioclase. Jarosite, hematite, halloysite, mica, K-feldspar, aragonite, siderite, and dolomite were also determined in very low concentrations. These minerals formed syngenetically and epigenetically. The syngenetic stage is characterized mainly by the formation of pyrite, carbonates, silicates and sulphates, whereas the Fe-oxyhydroxides, partially the carbonates and almost all silicates are of detrital origin. During the epigenetic stage, carbonates, sulphates, clay minerals, pyrite, and Fe-oxyhydroxides were formed. Alteration products like gypsum, jarosite, limonite, chlorite, kaolinite, illite, mica, and calcite were generated due to the transformation of detrital and authigenic minerals.