Reservoir Engineering Research Papers - Academia.edu (original) (raw)
The Gulf of Suez in Egypt has a north-northwest–south-southeast orientation and is located at the junction of the African and Arabian plates where it separates the northeast African continent from the Sinai Peninsula. It has excellent... more
The Gulf of Suez in Egypt has a north-northwest–south-southeast
orientation and is located at the junction of the African and Arabian
plates where it separates the northeast African continent from the
Sinai Peninsula. It has excellent hydrocarbon potential, with the
prospective sedimentary basin area measuring approximately
19,000 km2, and it is considered as the most prolific oil province
rift basin in Africa and the Middle East. This basin contains more
than 80 oil fields, with reserves ranging from 1350 to less than 1
million bbl, in reservoirs of Precambrian to Quaternary age. The
lithostratigraphic units in the Gulf of Suez can be subdivided into
three megasequences: a prerift succession (pre-Miocene or Paleozoic–
Eocene), a synrift succession (Oligocene–Miocene), and a
postrift succession (post-Miocene or Pliocene–Holocene). These
units vary in lithology, thickness, areal distribution, depositional
environment, and hydrocarbon importance. Geological and geophysical
data show that the northern and central Gulf of Suez consist
of several narrow, elongated depositional troughs, whereas the
southern part is dominated by a tilt-block terrane, containing numerous
offset linear highs.
Major prerift and synrift source rocks have potential to yield oil
and/or gas and are mature enough in the deep kitchens to generate
hydrocarbons. Geochemical parameters, sterane distribution, and
biomarker correlations are consistent with oils generated from marine
source rocks. Oils in the Gulf of Suez were sourced from potential
source rock intervals in the prerift succession that are typically
oil prone (type I), and in places oil and gas prone (type II), or
are composites of more than one type (multiple types I, II, or III
for oil prone, oil and gas prone, or gas prone, respectively).
The reservoirs can be classified into prerift reservoirs, such as
the Precambrian granitic rocks, Paleozoic–Cretaceous Nubian sandstones,
Upper Cretaceous Nezzazat sandstones and the fractured
Eocene Thebes limestone; and synrift reservoirs, such the Miocene
sandstones and carbonates of the Nukhul, Rudeis, Kareem, and Belayim
formations and the sandstones of South Gharib, Zeit, andpost-Zeit. The majority of oil fields in the region incorporate
multiple productive reservoirs. Miocene
evaporites are the ultimate hydrocarbon seals, whereas
the shale and dense limestones of the prerift and the
synrift stratigraphic units are the primary seals. Structural,
stratigraphic, and combination traps are encountered
in the study area. The Gulf of Suez is the most
prolific and prospective oil province in Egypt, and any
open acreage, or relinquished area, will be of great interest
to the oil industry.