Rotary ultrasonic machining Research Papers (original) (raw)
Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final... more
Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final stage assembly. In the present study, a hybrid ultrasonic machining method, called rotary ultrasonic machining (RUM), was successfully used in super alloy drilling. The empirical modeling of the process parameters of RUM was performed for the super alloy (Inconel 718) using an experimental design approach, called response surface methodology (RSM). Parameters, namely tool rotation, feed rate, ultrasonic power, and abrasive grit size, were selected as input variables. The others were kept constant. The performance was measured in terms of the machining rate and the surface roughness. The developed models were found to be reliable representatives of the experimental results with prediction errors less than ±5%. Moreover, the feed rate for the quality and productivity aspect was found to be the most critical factor. The optimized values of the machining rate and the surface roughness achieved through a multi-response optimization were 0.9 825 mm 3 /s and 0.951 lm, respectively.
Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP... more
Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate.
Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final... more
Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final stage assembly. In the present study, a hybrid ultrasonic machining method, called rotary ultrasonic machining (RUM), was successfully used in super alloy drilling. The empirical modeling of the process parameters of RUM was performed for the super alloy (Inconel 718) using an experimental design approach, called response surface methodology (RSM). Parameters, namely tool rotation, feed rate, ultrasonic power, and abrasive grit size, were selected as input variables. The others were kept constant. The performance was measured in terms of the machining rate and the surface roughness. The developed models were found to be reliable representatives of the experimental results with prediction errors less than ±5%. Moreover, the feed rate for the quality and productivity aspect was found to be the most critical factor. The optimized values of the machining rate and the surface roughness achieved through a multi-response optimization were 0.9 825 mm 3 /s and 0.951 lm, respectively.
Manufacturing industries are moving toward super alloys owing to their unique features. In this article, the performance analysis of nickel-based super alloys has been studied on rotary ultrasonic machining (RUM) by varying the tool... more
Manufacturing industries are moving toward super alloys owing to their unique features. In this article, the performance analysis of nickel-based super alloys has been studied on rotary ultrasonic machining (RUM) by varying the tool shapes and abrasive size of the diamond. The output quality of the machined part has been evaluated in terms of conicity and circularity of the hole. The machining process has been carried out by considering all the necessary RUM parameters like tool rotation, tool feed rate and ultrasonic power. The experimental setup validated that the lower value of conicity and circularity can be obtained at: tool rotation 4600 rpm, feed rate 0.013843 mm/s, ultrasonic power 60% abrasive size 140 mesh and using slotted tool. The variation in the abrasive size and the tool shapes has a significant effect on the performance of the machining.
ABSTRACT Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic... more
ABSTRACT Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM) process comes into existence as a superior alternative to the conventional machining of nickel alloys. The processing of these alloys using RUM needs attention. This article details the multi-response optimization in RUM of nickel alloy using the desirability concept. The present work is carried out with two shapes of the tool: (i) Plain tool and (ii) lateral slotted tool. During RUM, the process parameters—power rating tool rotation, abrasive diamond grit size and feed rate are varied. Compared with the plain tool, the lateral slotted tool shows the more efficient machining rate (MR) with less tool wear (TW). The micro-graphs disclose the mechanism of MR and TW during RUM.
Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM)... more
Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM) process comes into existence as a superior alternative to the conventional machining of nickel alloys. The processing of these alloys using RUM needs attention. This article details the multi-response optimization in RUM of nickel alloy using the desirability concept. The present work is carried out with two shapes of the tool: (i) Plain tool and (ii) lateral slotted tool. During RUM, the process parameters-power rating tool rotation, abrasive diamond grit size and feed rate are varied. Compared with the plain tool, the lateral slotted tool shows the more efficient machining rate (MR) with less tool wear (TW). The micro-graphs disclose the mechanism of MR and TW during RUM.
Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM)... more
Nickel alloys possess the excellent potential at high temperature and resistance to oxidation/corrosion owing to its high nickel content. These materials necessitate non-traditional machining methods. The rotary ultrasonic machining (RUM) process comes into existence as a superior alternative to the conventional machining of nickel alloys. The processing of these alloys using RUM needs attention. This article details the multi-response optimization in RUM of nickel alloy using the desirability concept. The present work is carried out with two shapes of the tool: (i) Plain tool and (ii) lateral slotted tool. During RUM, the process parameters-power rating tool rotation, abrasive diamond grit size and feed rate are varied. Compared with the plain tool, the lateral slotted tool shows the more efficient machining rate (MR) with less tool wear (TW). The micro-graphs disclose the mechanism of MR and TW during RUM.