Stellar Evolution Research Papers - Academia.edu (original) (raw)

An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its... more

An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its relationship to the cooling history of the central star, and also to provide an unbiased sample to investigate the frequency of binary central stars and their role in the formation and shaping of these objects. This study presents the most refined volume-limited survey of PNe known to date.

Integrated H-alpha fluxes for over 400 mostly evolved PNe are presented, based primarily on data from the Southern H-alpha Sky Survey Atlas (SHASSA) and the Virginia Tech Spectral-Line Survey (VTSS). Aperture photometry on the digital images was performed to extract H-alpha+[NII] fluxes. The [NII] contribution was then de-convolved using literature data, new data from slit spectra, or spectrophotometric data from the Wisconsin H-Alpha Mapper (WHAM) also obtained as part of this project. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. The H-alpha fluxes are used to determine new Zanstra temperatures for those PNe with accurate central star photometry, calculating surface-brightness distances for each PN in the sample, and in conjunction with accurate [OIII] fluxes, new absolute PN magnitudes for delineating the faint end of the PN luminosity function. A spectroscopic survey of a range of MASH PNe is also presented. New emission-line intensities for 60 PNe are given, including a preliminary discussion of the chemical abundances of this sample.

New distances have been determined for a large number of PNe, by either critically examining the literature, or by deriving new extinction and kinematic distances where suitable. For all PNe not amenable to these approaches, distances were estimated from a new H-alpha surface brightness-radius (SB-r) relation. The Hα SB-r relation covers >6 dex in SB, and while the spread in SB is ˜1 dex at a given radius, optically thick (mainly bipolar and bipolar-core) PNe tend to populate the upper bound of the trend, while common-envelope PNe and high-excitation PNe fall along the lower boundary in SB-r space. Using sub-trends has allowed more precision in the determination of distances, as good as ±22% in the case of high-excitation PNe. The adopted SB-r zero point, set from 122 galactic calibrators, recovers the distances to the LMC, SMC and the Sagittarius dSph galaxy to within 5%. With distances to all nearby PNe, I have generated the most accurate volume-limited sample of PNe (D ≤ 1.0 kpc) yet considered, containing ˜56 PNe. An extension sample to 2.0 kpc contains ˜210 PNe. An accurate database of parameters for nearly all of these objects is presented, providing integrated fluxes, diameters, morphological classifications, distances, ionized masses, expansion velocities, kinematic ages, chemical abundances, and central star properties for each PN in this volume-limited sample.

Details are also given on a number of misclassified 'PNe' which contaminate the local volume, including, amongst others, Abell 35, DHW 5, Sh 2-68, Sh 2-174, Hewett 1, RE 1738+665, PG 0108+101, PG 0109+111, PHL 932 and EGB 5. The observation that known close-binary PNe fall on a particular trend in SB-r space, is suggestive that these form a separate population to the majority of PNe. Recent conclusions that the great majority (or all) PNe go through a common-envelope phase are not supported at this point in time, though there is no doubt a modest frequency of common-envelope events has occurred in the solar neighbourhood. The exact number awaits a full multiplicity census of all objects within this volume. A preliminary estimate of the binary frequency of PN central stars in the solar neighbourhood is ˜52-58%, and hence I conclude that it is possible for single stars to produce PNe.

A deep local PN luminosity function is presented, extending to 10 magnitudes below the bright PN cutoff magnitude, M*. The local [OIII] PNLF is seen to be much more bottom-heavy than previously recognised, with up to half of all PNe being fainter than 7 mag below M*. An exponential increase in PN numbers occurs to ˜8.3 mag below M*, where a marked turnover in the PNLF is seen. The very faintest PNe may represent a population of low-mass objects with low-luminosity central stars. New estimates for the number density, scale height, birth rate, and total number of Galactic PNe, as extrapolated from the solar neighbourhood sample, are also given. The total Galactic population is estimated to be 24,000 ± 4000 PNe with r <1.5 pc, and 13,000 ± 2000 PNe with r <0.9 pc. The MW/LMC luminosity ratio implies a total LMC PN population of ˜2400. Evidently many more PNe remain to be discovered in this system. The observed Galactic population leads to a PN birthrate of 0.8 ± 0.3 x 10-12 pc-3yr-1, fully consistent within the errors with the birthrate of white dwarfs.

A remarkable bow-shock nebula around a previously unnoticed, bright, nova-like cataclysmic variable, V341 Ara, has also been discovered as part of this study. The star has a high space motion, leading to the formation of the parabolic bow-shock at the interaction of the disk wind and the ISM. The proximity of this nebula to the Sun suggests the space density of such objects may quite high. Similar nebulae might be found through a narrowband search around other CVs with significant proper motion.