Syllogisms Research Papers - Academia.edu (original) (raw)

BACKGROUND
https://www.tandfonline.com/doi/full/10.1080/01445340.2014.952947
Existential Import Today: New Metatheorems;
Historical, Philosophical, and Pedagogical
Misconceptions
John Corcoran & Hassan Masoud
To cite this article: John Corcoran & Hassan Masoud (2015) Existential Import Today: New Metatheorems; Historical, Philosophical, and Pedagogical Misconceptions, History and Philosophy of Logic, 36:1, 39-61, DOI: 10.1080/01445340.2014.952947
To link to this article: https://doi.org/10.1080/01445340.2014.952947

https://www.academia.edu/19583415/Bibliography_John_Corcoran_s_Publications_on_Aristotle_1972_2015

IN CONJUNCTION WITH A PROJECT REQUESTED BY JOHN CORCORAN
as follows: PAGE 1: ENGLISH BY JOHN CORCORAN PAGE 2: FRENCH BY HARRIS K NOTTAS PAGE 3: FOOTNOTES in French and English:

What syllogisms are: Three views, Eight centuries.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu
At issue is the nature of “the syllogisms” in Prior Analytics [1]. For centuries from the
1200s, the dominant view was enshrined in the medieval mnemonic “Barbara-Celarent” [2]:syllogisms are certain valid premise-conclusion arguments commonly mislabelled “inferences”. In the mid-1900s many modern logicians adopted a contrary view credited to Jan Lukasiewicz [3]: syllogisms are certain true universal propositions informally called “implications”. A fruitful two-sided debate ensued producing evidence weakening the Lukasiewicz case. Toward the last quarter of the 1900s, a third contender appeared. Independently, John Corcoran [4] and Timothy Smiley [5] took the class of syllogisms to exclude propositions while including not only the valid arguments recognized as syllogisms in medieval times but also deductions establishing validity. A deduction contains, over and above premises and conclusion of an argument, a chain of reasoning showing that the conclusion’s information is contained in that of the premises. The debate became three-sided for twenty years or more. The Lukasiewicz view lacks current defenders leaving the debate to the medieval and Corcoran-Smiley views. This study details all three views
—emphasizing their differences. For example, the medieval syllogisms are valid but ‘true’ does not apply to them, though their premises and conclusions are all true or false. The Lukasiewicz syllogisms are all true but the term ‘valid’ as applied to arguments is inappropriate. The Corcoran-Smiley syllogisms cannot be said to be true in the sense applicable to propositions but they are all valid in the sense that their conclusions follow from their premises. Moreover, many of them containing chains of reasoning are “cogent” [6] in an epistemic sense not applicable either to the Lukasiewicz view nor to the medieval definition of syllogisms.

Qu'’est Ce Que C’est un Syllogisme : Trois Points de Vue, Huit Siècles.
Philosophie, Université de Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu
La nature du «syllogisme» dans “”Prior Analytics”” [1] est en cause.
Depuis des siècles commencant en 1200, la vision dominante était enchâssée dans la mnémotechnique médiévale «Barbara-Celarent» [2]: les syllogismes sont certains arguments valables prémisses-conclusions couramment mal étiquetées comme «Inférences». Au milieu des années 1900, de nombreux logiciens modernes ont adopté une vision contraire, attribuée à Jan Lukasiewicz [3]: les syllogismes sont certaines vraies propositions universelles appelées informellement «Implications». Un débat bilatéral fructueux s’en est suivi, qui a produit des preuves affaiblissant l’ Affaire Lukasiewicz.
Vers le dernier quart des années 1900, un troisième candidat est apparu. Indépendamment, John Corcoran [4] et Timothy Smiley [5] ont pris la classe de syllogismes pour exclure les propositions tout en incluant non seulement les arguments valables reconnus comme syllogismes à l’époque médiévale, mais aussi les déductions établissant la validité. Une déduction comprend, outre les prémisses. et les ou la conclusion d’un argument, une chaîne de raisonnement montrant que l’information de la conclusion est contenue dans celui des prémisses. Le débat est devenu trilatéral pendant vingt ans ou plus. Les opinions de Lukasiewicz manquent de défenseurs actuellement, laissant donc le débat entre les opinions du Moyen-Âge et ceux de Corcoran et Smiley. Cette étude détaille les trois points de vue en soulignant leurs différences. Par exemple, les syllogismes médiévaux sont valides mais le mot «vrai» ne s’applique pas à eux, bien que leurs prémisses et leurs conclusions soient toutes vraies ou fausses. Les syllogismes de Lukasiewicz sont tous vrais, mais le terme «valide» appliqué aux arguments n’est pas approprié. On ne peut pas dire que les syllogismes de Corcoran-Smiley soient vrais au sens où ils s'appliquent aux propositions, mais ils sont tous valides en ce sens que leurs conclusions découlent de leurs prémisses. De plus, beaucoup d’entre eux contenant des chaînes de raisonnement sont «convaincants» [6] au sens épistémique, et ne s’appliquent ni a ceux de Lukasiewicz ni aux syllogismes médiévaux.
ENGLISH FOOTNOTES
[1] ROBIN SMITH, Aristotle’s Prior Analytics, Hackett, 1989.
[2] JOHN CORCORAN, DANIEL NOVOTNÝ, AND KEVIN TRACY, Deductions and Reductions Decoding Syllogistic Mnemonics, Entelekya Logico-Metaphysical Review, vol.2 (2018), pp. 5–39.
[3] JAN ŁUKASIEWICZ, Aristotle’s syllogistic, Oxford UP, 1951.
[4] JOHN CORCORAN, Aristotle’s Prototype Rule
-based Underlying Logic, Logica Universalis, vol. 2 (2018) pp. 9-35.
[5] TIMOTHY SMILEY, What is a Syllogism?, Journal of Philosophical Logic, vol. 2 (1973) pp. 136 –154.
[6] JOHN CORCORAN, Argumentations and logic, Argumentation, vol. 3 (1989), pp. 17–43
FRENCH FOOTNOTES
[1] ROBIN SMITH, Prior Analytics d’Aristote, Hackett, 1989.
[2] JOHN CORCORAN, DANIEL NOVOTNÝ ET KEVIN TRACY, Déductions et réductions. Décodage des mnémoniques syllogistiques, Revue Logico-métaphysique Entelekya, vol. 5–39.
[3] JAN ŁUKASIEWICZ, syllogistique d’Aristote, Oxford UP, 1951.
[4] JOHN CORCORAN, Logica Universalis, la logique sous-jacente basée sur des règles du prototype d’Aristote,vol. 2 (2018) p. 9-35.
[5] TIMOTHY SMILEY, Qu'est- ce que c’est un Syllogisme ?, Journal of Philosophical Logic, vol. 2 (1973) pages 136-154.
[6] JOHN CORCORAN, Argumentations et La Logique, Argumentation, vol. 3 (1989), p. 17–43
FURTHER MATERIAL OF GREAT INTEREST
John Corcoran and Hassan Masoud. 2014. “Existential import today: New metatheorems; historical, philosophical, and pedagogical misconceptions”. History and Philosophy of Logic. 36: 39–61.

To hear the paper read aloud while you follow along with the text visit this link.

http://www.tandfonline.com/doi/full/10.1080/01445340.2014.952947

Ranked first on the “Most-read list” at History and Philosophy of Logic with over 6500 readers, this demanding but self-contained and widely accessible paper refutes over a century of mistakes about existential import.

All terminology is not only explained but discussed. Many useful examples presented in usable form. It is suitable for classroom use.

Central to our campaign is the fact that first-order logic has limited existential import: the universalized conditional implies its corresponding existentialized conjunction in some but not all cases. We prove Corcoran's Existential-Import Equivalence: In any first-order logic, for a universalized conditional to imply the corresponding existentialized conjunction it is necessary and sufficient for the existentialization of the antecedent predicate to be tautological.

Click to listen to the audio or for a free preview and download.
http://www.tandfonline.com/doi/full/10.1080/01445340.2014.952947

WHAT MATHEMATICAL LOGIC IS

Corcoran and Shapiro What Mathematical Logic Is

https://www.academia.edu/12618307/Corcoran_and_Shapiro_review_What_is_Mathematical_Logic_updated_PDF

https://www.academia.edu/s/184e4e0892/corcoran-shapiro-on-what-mathematical-logic-realy-is-philosophia-1978?source=link

1976. Crossley, J. N. What is Mathematical Logic? OxfordUP 1972. Philosophy of Science 43, 301–302 (Co-author: S. Shapiro). J