van der Waals interaction Research Papers (original) (raw)

In order to mimic the surface of parenteral nutrition emulsion droplets, the first molecular dynamics simulation of a palmitoyloleoylphosphatidylcholine (POPC) monolayer at a water/triglyceride (trilinoleoylglycerol, LLL) interface was... more

In order to mimic the surface of parenteral nutrition emulsion droplets, the first molecular dynamics simulation of a palmitoyloleoylphosphatidylcholine (POPC) monolayer at a water/triglyceride (trilinoleoylglycerol, LLL) interface was performed. Triglyceride influence was evaluated by comparing computed phospholipid properties to the ones in a similarly modelled hydrated POPC bilayer. As expected, polar head properties (molecular area, lipid hydration, headgroup orientation) were not affected by triglycerides. In contrast, slight differences were observed on phospholipid alkyl tail region (order parameter, diffusion, Van der Waals interactions). This first approach can reasonably be extended to a further more realistic multicomponent model of clinical nutrition emulsions.

Forces of the Quantum Vacuum presents a number of theoretical approaches to Casimir, van der Waals and Casimir–Polder forces that have been fruitfully employed in mainstream research, and also reviews the experimental evidence for Casimir... more

Forces of the Quantum Vacuum presents a number of theoretical approaches to Casimir, van der Waals and Casimir–Polder forces that have been fruitfully employed in mainstream research, and also reviews the experimental evidence for Casimir forces. Beginning with basic ideas in quantum mechanics and building its way to a sophisticated form of macroscopic Qed, the book provides an inspiring training manual for graduate students to develop in a natural progression the ideas needed for modern theoretical research on Casimir forces.

We calculate transmission eigenvalue distributions for Pt--benzene--Pt and Pt--butadiene--Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting pi\pipi-electrons is used to include... more

We calculate transmission eigenvalue distributions for Pt--benzene--Pt and Pt--butadiene--Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting pi\pipi-electrons is used to include screening and van der Waals interactions with the metal electrodes. We find that the number of dominant transmission channels in a molecular junction is equal to the degeneracy of the molecular orbital closest to

The cubic van der Waals equation of state at the critical condition is reduced to a linear function (Vc vs. Tc /Pc coordinates) with one adjustable parameter. It is shown that at the critical point the relation Vc = 3Vo must not hold as... more

The cubic van der Waals equation of state at the critical condition is reduced to a linear function (Vc vs. Tc /Pc coordinates) with one adjustable parameter. It is shown that at the critical point the relation Vc = 3Vo must not hold as van der Waals suggested, but the attractive constant α = Pc Vc2 remains. Selected values of Tc, Pc, Vc compiled by Ihmels where focused on testing the quality of several empirical equations relating critical conditions. It is shown that the obtained critical constants correlation is a general form of the empirical expressions proposed by Young, Meissner, Bird, Grigoras and Ihmels. From the resulting correlation function, a function for the critical compressibility is proposed. The critical volume Vc and the ratio Tc /Pc have been expressed in group contributions.

A model was developed for the effect of van der Waals interactions between a rough, deformable, spherical colloid and a flat, smooth, hard surface in contact. The model demonstrates the significant effect of colloid roughness on removal... more

A model was developed for the effect of van der Waals interactions between a rough, deformable, spherical colloid and a flat, smooth, hard surface in contact. The model demonstrates the significant effect of colloid roughness on removal force. Small changes in colloid roughness produce large changes in the predicted removal force. Several authors attribute discrepancies in the observed interaction force between particles and surfaces to colloid roughness, and our model supports their hypotheses. Experimental data documenting the force required to remove colloids of polystyrene latex from silica substrates in aqueous solution were collected during AFM studies of this system. When colloid roughness exists, as is the case in this work, our model bounds the observed removal force. The predicted range of removal forces is in better quantitative agreement with our removal force data than are forces predicted by classical DLVO theory.

Thermal properties of corn gluten meal (CGM) and of its extracted proteic components (zein and glutelin) at 0% moisture content, is studied by dynamic mechanical thermal analysis (DMTA) and modulated differential scanning calorimetry... more

Thermal properties of corn gluten meal (CGM) and of its extracted proteic components (zein and glutelin) at 0% moisture content, is studied by dynamic mechanical thermal analysis (DMTA) and modulated differential scanning calorimetry (MDSC). The glass transition temperature (Tg) on first heating, is measured at 176 and 174 degrees C, respectively, for hot-air-dried and native CGM. For zein and glutelin isolated fractions, the measured Tg values are 164 and 209 degrees C, respectively. The calculated Tg from using Matveev's method (Matveev YI. Spec Publ R Soc Chem 1995;156;552) is in good agreement with experimental data for zein, a well defined protein. MDSC allows the measurement of change in heat capacity at Tg (deltaCp) with a single heating scan, avoiding sample alteration, and deltaCp values are 0.365 J/g per K for zein and 0.184 J/g per K for glutelin. The differences observed in Tg, relaxation temperatures, deltaCp and tan delta peak height are related to differences in the structure of the proteins, through the cross-linkages and hydrogen or van der Waals interactions. Experimental data from DMTA and MDSC, and the Couchman-Karasz thermodynamic approach indicate that CGM behaves as a miscible blend of its components, with high non-polar interactions between zein and glutelin proteins.

The influence of presence of counter ions and π-complexation with benzene on the bonding and magnetic properties of Al4 2, the most studied all-metal cluster, is studied here. It is shown that complexation by either counter ions or... more

The influence of presence of counter ions and π-complexation with benzene on the bonding and
magnetic properties of Al4
2, the most studied all-metal cluster, is studied here. It is shown that
complexation by either counter ions or benzene decreases the delocalization index between
Al atoms and the magnitude of bond magnetizability, that is a Quantum Theory of Atoms in
Molecules, QTAIM, -based magnetic index of aromaticity. Benzene forms two types of π-complexes
with the Al4 framework; CH–π (T-shaped) complexes and parallel π–π stacking (PPS) complexes.
It is shown that variation in the p-charge of the Al4 framework affects the relative stability of the
T-shaped/PPS complexes. Free Al4
2 forms a stable T-shaped anion–π complex with benzene but
in the presence of cations, formation of PPS complexes is more favourable, energetically. It is
suggested that this property could be used for designing molecular switches and tuneable anion
sensors.

Polarizabilities and London dispersion forces are important to many chemical processes. Force fields for classical atomistic simulations can be constructed using atom-in-material polarizabilities and C n (n ¼ 6, 8, 9, 10.) dispersion... more

Polarizabilities and London dispersion forces are important to many chemical processes. Force fields for classical atomistic simulations can be constructed using atom-in-material polarizabilities and C n (n ¼ 6, 8, 9, 10.) dispersion coefficients. This article addresses the key question of how to efficiently assign these parameters to constituent atoms in a material so that properties of the whole material are better reproduced. We develop a new set of scaling laws and computational algorithms (called MCLF) to do this in an accurate and computationally efficient manner across diverse material types. We introduce a conduction limit upper bound and m-scaling to describe the different behaviors of surface and buried atoms. We validate MCLF by comparing results to high-level benchmarks for isolated neutral and charged atoms, diverse diatomic molecules, various polyatomic molecules (e.g., polyacenes, fullerenes, and small organic and inorganic molecules), and dense solids (including metallic, covalent, and ionic). We also present results for the HIV reverse transcriptase enzyme complexed with an inhibitor molecule. MCLF provides the non-directionally screened polarizabilities required to construct force fields, the directionally-screened static polarizability tensor components and eigenvalues, and environmentally screened C 6 coefficients. Overall, MCLF has improved accuracy compared to the TS-SCS method. For TS-SCS, we compared charge partitioning methods and show DDEC6 partitioning yields more accurate results than Hirshfeld partitioning. MCLF also gives approximations for C 8 , C 9 , and C 10 dispersion coefficients and quantum Drude oscillator parameters. This method should find widespread applications to parameterize classical force fields and density functional theory (DFT) + dispersion methods.

Current carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters... more

Current carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters determined by atomistic methods, here we represent individual CNTs by a simple single degree of freedom ‘lollipop’ model to investigate the formation, mechanics, and self-organization of CNT bundles driven by weak van der Waals interactions. The computationally efficient simple single degree of freedom model enables us to study arrays consisting of hundreds of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, bending stiffness, and surface energy, on formation and bundle size, as well as the intentional manipulation of bundle pattern formation, are investigated. We report studies with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes (DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local density distributions of the nanotube bundles and show that there exists a maximum attainable bundle density regardless of an increase in surface energy for nanotubes with given spacing and stiffness. In addition to applications to CNTs, our model can also be applied to other types of nanotube arrays (e.g. protein nanotubes, polymer nanofilaments).

The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations using van der Waals (vdW) density-functional theory, i.e. using the new exchange-correlation functionals optPBE-vdW and vdW-DF2.... more

The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations using van der Waals (vdW) density-functional theory, i.e. using the new exchange-correlation functionals optPBE-vdW and vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly directional hydrogen-bonds, which are enhanced by standard functionals. This brings about a softening of the microscopic structure of water, as seen from the broadening of angular distribution functions and, in particular, from the much lower and broader first peak in the oxygen-oxygen pair-correlation function (PCF), indicating loss of structure in the outer solvation shells. In combination with softer non-local correlation terms, as in the new parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the balance of resulting structures from open tetrahedral to more close-packed. The resulting O-O PCF shows some resemblance with experiment for high-density water (A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not directly with experiment for ambient water. However, an O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from experiment on low-density liquid water reproduces near-quantitatively the experimental O-O PCF for ambient water, indicating consistency with a two-liquid model with fluctuations between high- and low-density regions.

... Introduction 2. Molecular dynamics method and computational model 3. Buckling and postbucklingresponse at room ... Ru [11], [12], [13] and [14] studied free vibration and infinitesimal buckling of single-and ... 21, 0)-tube with... more

... Introduction 2. Molecular dynamics method and computational model 3. Buckling and postbucklingresponse at room ... Ru [11], [12], [13] and [14] studied free vibration and infinitesimal buckling of single-and ... 21, 0)-tube with radius R = 0.8 nm are selected in the present analysis. ...

Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. However,... more

Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in

Etoposide is effective as an anti-tumour drug by inhibiting eukaryotic DNA topoisomerase II via establishing a covalent complex with DNA. Unfortunately, its wide therapeutic application is often hindered by multidrug resistance (MDR), low... more

Etoposide is effective as an anti-tumour drug by inhibiting eukaryotic DNA topoisomerase II via establishing a covalent complex with DNA. Unfortunately, its wide therapeutic application is often hindered by multidrug resistance (MDR), low water solubility and toxicity. In our previous study, new derivatives of benzoxazoles, benzimidazoles and related fused heterocyclic compounds, which exhibited significant eukaryotic DNA topoisomerase II inhibitory activity, were synthesized and exhibited better inhibitory activity compared with the drug etoposide itself. To expose the binding interactions between the eukaryotic topoisomerase II and the active heterocyclic compounds, docking studies were performed, using the software Discovery Studio 2.1, based on the crystal structure of the Topo IIA-bound G-segment DNA (PDB ID: 2RGR). The research was conducted on a selected set of 31 fused heterocyclic compounds with variation in structure and activity. The structural analyses indicate coordinate and hydrogen bonding interactions, van der Waals interactions and hydrophobic interactions between ligands and the protein, as Topo IIA-bound G-segment DNA are responsible for the preference of inhibition and potency. Collectively, the results demonstrate that the compounds 1a, 1c, 3b, 3c, 3e and 4a are significant anti-tumour drug candidates that should be further studied.

A host of important performance properties for metal-organic frameworks (MOFs) and other complex materials can be calculated by modeling statistical ensembles. The principle challenge is to develop accurate and computationally efficient... more

A host of important performance properties for metal-organic frameworks (MOFs) and other complex materials can be calculated by modeling statistical ensembles. The principle challenge is to develop accurate and computationally efficient interaction models for these simulations. Two major approaches are (i) ab initio molecular dynamics in which the interaction model is provided by an exchange-correlation theory (e.g., DFT + dispersion functional) and (ii) molecular mechanics in which the interaction model is a parameterized classical force field. The first approach requires further development to improve computational speed. The second approach requires further development to automate accurate forcefield parameterization. Because of the extreme chemical diversity across thousands of MOF structures, this problem is still mostly unsolved today. For example, here we show structures in the 2014 CoRE MOF database contain more than 8 thousand different atom types based on first and second neighbors. Our results showed that atom types based on both first and second neighbors adequately capture the chemical environment, but atom types based on only first neighbors do not. For 3056 MOFs, we used density functional theory (DFT) followed by DDEC6 atomic population analysis to extract a host of important forcefield precursors: partial atomic charges; atom-in-material (AIM) C 6 , C 8 , and C 10 dispersion coefficients; AIM dipole and quadrupole moments; various AIM polarizabilities; quantum Drude oscillator parameters; AIM electron cloud parameters; etc. Electrostatic parameters were validated through comparisons to the DFT-computed electrostatic potential. These forcefield precursors should find widespread applications to developing MOF force fields.

Moisture damages to bituminous pavements leads to costly repairs. The most serious outcome of the influence of water is the loss of adhesion between binders and aggregates. This is often described as stripping. Adhesion is the ability at... more

Moisture damages to bituminous pavements leads to costly repairs. The most serious outcome of the influence of water is the loss of adhesion between binders and aggregates. This is often described as stripping. Adhesion is the ability at a molecular level of materials to stick steadfastly to one another. An alternative way of explaining the adhesion of bitumen to aggregates is presented in this paper using the Hamaker constant, a measure of the van der Waals attraction forces between two materials. The Hamaker constant is significantly lower for water as the intervening medium than for air. For the aggregates and minerals studied, the Lifshitz-van der Waals interactions contribute 65–78 percent of the ‘work of adhesion’ calculated by the acid-base method. The performance of the aggregates and minerals correlates well to Atotal where resistance to stripping data is available.