Clinical case of distal arthrogryposis in combination with epilepsy due to an unbalanced translocation (original) (raw)

1. Zlotolow D.A. Arthrogryposis. In: Abzug J.M., Kozin S.H., Neiduski R. (Eds.) Pediatric hand therapy. Philadelphia: Elsevier; 2020: 133–146. https://doi.org/10.1016/B978-0-323-53091-0.00010-5.

2. Kimber E., Tajsharghi H., Kroksmark A.K., et al. Distal arthrogryposis: clinical and genetic findings. Acta Paediatr. 2012; 101 (8): 877–87. https://doi.org/10.1111/j.1651-2227.2012.02708.x.

3. Freeman E.A., Sheldon J.H. Cranio-carpo-tarsal dystrophy. Arch Dis Child. 1938; 13 (75): 277–83. https://doi.org/10.1136/adc.13.75.277.

4. Stevenson D.A., Carey J.C., Palumbos J., et al. Clinical characteristics and natural history of Freeman–Sheldon syndrome. Pediatrics. 2006; 117 (3): 754–62. https://doi.org/10.1542/peds.2005-1219.

5. Gurjar V., Parushetti A., Gurjar M. Freeman–Sheldon syndrome presenting with microstomia: a case report and literature review. J Maxillofac Oral Surg. 2013; 12 (4): 395–9. https://doi.org/10.1007/s12663-012-0392-4.

6. Perry G.H., Ben-Dor A., Tsalenko A., et al. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet. 2008; 82 (3): 685–95. https://doi.org/10.1016/j.ajhg.2007.12.010.

7. Wang D., Li X., Jia S., et al. Copy number variants associated with epilepsy from gene expression microarrays. J Clin Neurosci. 2015; 22 (12): 1907–10. https://doi.org/10.1016/j.jocn.2015.05.033.

8. Mefford H.C., Muhle H., Ostertag P., et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010; 6 (5): e1000962. https://doi.org/10.1371/journal.pgen.1000962.

9. Li W., Olivier M. Current analysis platforms and methods for detecting copy number variation. Physiol Genomics. 2013; 45 (1): 1–16. https://doi.org/10.1152/physiolgenomics.00082.2012.

10. Ben-David U., Mayshar Y., Benvenisty N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc. 2013; 8 (5): 989–97. https://doi.org/10.1038/nprot.2013.051.

11. Bollen S., Leddin M., Andrade-Navarro M.A., Mah N. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data. Bioinformatics. 2014; 30 (10):1484–5. https://doi.org/10.1093/bioinformatics/btu028.

12. James W., Elston D., Treat J., et al. Andrews’ diseases of the skin: clinical dermatology. 13th ed. Philadelphia: Elsevier; 2019: 992 pp.

13. OMIM 193700. Arthrogryposis, distal, type 2A; DA2A. Available at: https://omim.org/entry/193700 (accessed 30.03.2022).

14. Stevenson D.A., Carey J.C., Palumbos J., et al. Clinical characteristics and natural history of Freeman–Sheldon syndrome. Pediatrics. 2006; 117 (3): 754–62. https://doi.org/10.1542/peds.2005-1219.

15. Antley R.M., Uga N., Burzynski N.J., et al. Diagnostic criteria for the whistling face syndrome. Birth Defects Orig Artic Ser. 1975; 11 (5): 161–8.

16. Toydemir P.B., Toydemir R., Bökesoy I. Whistling face phenotype without limb abnormalities. Am J Med Genet. 1999; 86 (1): 86–7. https://doi.org/10.1002/(sici)1096-8628(19990903)86:1<86::aid-ajmg17>3.0.co;2-9.

17. Shaffer L.G., Lupski J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet. 2000; 34: 297–329. https://doi.org/10.1146/annurev.genet.34.1.297.

18. Batzir N.A., Shohat M., Maya I. Chromosomal microarray analysis (CMA) a clinical diagnostic tool in the prenatal and postnatal settings. Pediatr Endocrinol Rev. 2015; 13 (1): 448–54.