Check if an array is Wave Array (original) (raw)
Last Updated : 02 May, 2025
Given an array of N positive integers. The task is to check if the array is sorted in wave form.
**Examples:
**Input: arr[] = {1, 2, 3, 4, 5}
**Output: NO**Input: arr[] = {1, 5, 3, 7, 2, 8, 6}
**Output: YES
**Approach:
- First check the element at index 1, i.e, **arr[1] and observe the pattern.
- If **arr[1] is greater than its left and right element, then this pattern will be followed by other elements.
- Else If **arr[1] is smaller than its left and right element, then this pattern will be followed by other elements.
- Check for the same pattern found from above steps. If at any point, this rule violates, return false, else return true.
Below is the implementation of above approach:
C++ `
// CPP code to check if the array is wave array #include using namespace std;
// Function to check if array is wave array // arr : input array // n : size of array bool isWaveArray(int arr[], int n) {
bool result = false;
/* Check the wave form
* If arr[1] is greater than left and right
* Same pattern will be followed by whole
* elements, else reverse pattern
* will be followed by array elements
*/
if (arr[1] > arr[0] && arr[1] > arr[2]) {
for (int i = 1; i < n - 1; i += 2) {
if (arr[i] > arr[i - 1] && arr[i] > arr[i + 1]) {
result = true;
}
else {
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0) {
if (arr[n - 1] <= arr[n - 2]) {
result = false;
}
}
}
else if (arr[1] < arr[0] && arr[1] < arr[2]) {
for (int i = 1; i < n - 1; i += 2) {
if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) {
result = true;
}
else {
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0) {
if (arr[n - 1] >= arr[n - 2]) {
result = false;
}
}
}
return result;
}
// Driver Code int main() {
// Array
int arr[] = { 1, 3, 2, 4 };
int n = sizeof(arr) / sizeof(int);
if (isWaveArray(arr, n)) {
cout << "YES" << endl;
}
else {
cout << "NO" << endl;
}
return 0;
}
Java
// Java code to check if the array is wave array
public class GFG {
// Function to check if array is wave array
// arr : input array
// n : size of array
static boolean isWaveArray(int arr[], int n)
{
boolean result = true;
/* Check the wave form
* If arr[1] is greater than left and right
* Same pattern will be followed by whole
* elements, else reverse pattern
* will be followed by array elements
*/
if (arr[1] > arr[0] && arr[1] > arr[2]) {
for (int i = 1; i < n - 1; i += 2) {
if (arr[i] > arr[i - 1] && arr[i] > arr[i + 1]) {
result = true;
}
else {
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0) {
if (arr[n - 1] <= arr[n - 2]) {
result = false;
}
}
}
else if (arr[1] < arr[0] && arr[1] < arr[2]) {
for (int i = 1; i < n - 1; i += 2) {
if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) {
result = true;
}
else {
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0) {
if (arr[n - 1] >= arr[n - 2]) {
result = false;
}
}
}
return result;
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 3, 2, 4 };
int n = arr.length;
if (isWaveArray(arr, n)) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
// This Code is contributed by ANKITRAI1
}
Python 3
Python 3 code to check if
the array is wave array
Function to check if
array is wave array
arr : input array
n : size of array
def isWaveArray(arr , n):
result = True
# Check the wave form
# If arr[1] is greater than
# left and right. Same pattern
# will be followed by whole
# elements, else reverse pattern
# will be followed by array elements
if (arr[1] > arr[0] and arr[1] > arr[2]):
for i in range(1, n - 1, 2):
if (arr[i] > arr[i - 1] and
arr[i] > arr[i + 1]):
result = True
else :
result = False
break
# Check for last element
if (result == True and n % 2 == 0):
if (arr[n - 1] <= arr[n - 2]) :
result = False
elif (arr[1] < arr[0] and
arr[1] < arr[2]) :
for i in range(1, n - 1, 2) :
if (arr[i] < arr[i - 1] and
arr[i] < arr[i + 1]):
result = True
else :
result = False
break
# Check for last element
if (result == True and n % 2 == 0) :
if (arr[n - 1] >= arr[n - 2]) :
result = False
return result
Driver Code
if name == "main":
# Array
arr = [ 1, 3, 2, 4 ]
n = len(arr)
if (isWaveArray(arr, n)):
print("YES")
else:
print("NO")
This code is contributed
by ChitraNayal
C#
// C# code to check if the // array is wave array using System;
class GFG {
// Function to check if array // is wave array // arr : input array // n : size of array static bool isWaveArray(int []arr, int n) {
bool result = true;
/* Check the wave form
* If arr[1] is greater than left
* and right. Same pattern will be
* followed by whole elements, else
* reverse pattern will be followed
by array elements */
if (arr[1] > arr[0] && arr[1] > arr[2])
{
for (int i = 1; i < n - 1; i += 2)
{
if (arr[i] > arr[i - 1] &&
arr[i] > arr[i + 1])
{
result = true;
}
else
{
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0)
{
if (arr[n - 1] <= arr[n - 2])
{
result = false;
}
}
}
else if (arr[1] < arr[0] &&
arr[1] < arr[2])
{
for (int i = 1; i < n - 1; i += 2)
{
if (arr[i] < arr[i - 1] &&
arr[i] < arr[i + 1])
{
result = true;
}
else
{
result = false;
break;
}
}
// Check for last element
if (result == true && n % 2 == 0)
{
if (arr[n - 1] >= arr[n - 2])
{
result = false;
}
}
}
return result;
}
// Driver code public static void Main() { int []arr = { 1, 3, 2, 4 };
int n = arr.Length;
if (isWaveArray(arr, n))
{
Console.WriteLine("YES");
}
else
{
Console.WriteLine("NO");
}
} }
// This code is contributed // by inder_verma
JavaScript
PHP
`
**Time Complexity: O(n)
**Auxiliary Space: O(1)
Approach :- 2 One approach to check if an array is a wave array is to first sort the array in ascending order. Then, we can swap adjacent elements to form a wave-like pattern. If at least one element does not satisfy the wave property, the array is not a wave array.
Here is the implementation of this approach:
Traverse the array from the second element to the second last element.
Check if the current element is greater than or equal to both its adjacent elements or smaller than or equal to both its adjacent elements.
If it satisfies the above condition, move to the next element, else return false.
If the entire array has been traversed without any element failing the condition, return true.
C++ `
#include <bits/stdc++.h> using namespace std;
bool isWave(int arr[], int n) { // sort the array sort(arr, arr + n);
// swap adjacent elements to form wave
for (int i = 0; i < n - 1; i += 2) {
swap(arr[i], arr[i + 1]);
}
// check if wave property is satisfied
for (int i = 0; i < n - 1; i++) {
if ((i % 2 == 0 && arr[i] > arr[i + 1]) ||
(i % 2 == 1 && arr[i] < arr[i + 1])) {
return true;
}
}
return false;
}
int main() { int arr[] = { 1, 3, 2, 4 }; int n = sizeof(arr) / sizeof(arr[0]);
if (isWave(arr, n)) {
cout << "The array is a wave array";
} else {
cout << "The array is not a wave array";
}
return 0;
}
Java
import java.util.Arrays;
public class GFG { // Function to check if the given array is a wave array static boolean isWave(int[] arr, int n) { // Sort the array in ascending order Arrays.sort(arr);
// Swap adjacent elements to form a wave
for (int i = 0; i < n - 1; i += 2) {
swap(arr, i, i + 1);
}
// Check if the wave property is satisfied
for (int i = 0; i < n - 1; i++) {
// For even indices, check if the current element is greater than the next element
// For odd indices, check if the current element is smaller than the next element
if ((i % 2 == 0 && arr[i] > arr[i + 1]) || (i % 2 == 1 && arr[i] < arr[i + 1])) {
return true; // If the wave property is satisfied, return true
}
}
return false; // If the wave property is not satisfied for any pair, return false
}
// Helper function to swap two elements in an array
static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void main(String[] args) {
int[] arr = { 1, 3, 2, 4 };
int n = arr.length;
if (isWave(arr, n)) {
System.out.println("The array is a wave array");
} else {
System.out.println("The array is not a wave array");
}
}
}
Python3
def is_wave(arr): # Sort the array in ascending order arr.sort()
# Swap adjacent elements to form a wave
for i in range(0, len(arr) - 1, 2):
arr[i], arr[i + 1] = arr[i + 1], arr[i]
# Check if the wave property is satisfied
for i in range(len(arr) - 1):
if (i % 2 == 0 and arr[i] > arr[i + 1]) or (i % 2 == 1 and arr[i] < arr[i + 1]):
return True
return False
Driver code
if name == "main": arr = [1, 3, 2, 4]
if is_wave(arr):
print("The array is a wave array")
else:
print("The array is not a wave array")
C#
using System;
public class GFG { // Function to check if the array is a wave array public static bool IsWave(int[] arr, int n) { // Sort the array Array.Sort(arr);
// Swap adjacent elements to form a wave
for (int i = 0; i < n - 1; i += 2)
{
int temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
// Check if the wave property is satisfied
for (int i = 0; i < n - 1; i++)
{
if ((i % 2 == 0 && arr[i] > arr[i + 1]) ||
(i % 2 == 1 && arr[i] < arr[i + 1]))
{
return true;
}
}
return false;
}
public static void Main(string[] args)
{
int[] arr = { 1, 3, 2, 4 };
int n = arr.Length;
if (IsWave(arr, n))
{
Console.WriteLine("The array is a wave array");
}
else
{
Console.WriteLine("The array is not a wave array");
}
}
}
JavaScript
function isWave(arr) { // Sort the array arr.sort((a, b) => a - b);
// Swap adjacent elements to form a wave
for (let i = 0; i < arr.length - 1; i += 2) {
[arr[i], arr[i + 1]] = [arr[i + 1], arr[i]];
}
// Check if the wave property is satisfied
for (let i = 0; i < arr.length - 1; i++) {
if ((i % 2 === 0 && arr[i] > arr[i + 1]) || (i % 2 === 1 && arr[i] < arr[i + 1])) {
return true;
}
}
return false;
}
//Driver code const arr = [1, 3, 2, 4];
if (isWave(arr)) { console.log("The array is a wave array"); } else { console.log("The array is not a wave array"); }
`
Output
The array is a wave array
Time Complexity:
The algorithm involves a linear scan of the entire array, which takes O(nlogn) time, where n is the size of the array.
Auxiliary Space:
The algorithm uses only constant extra space to store the indices and variables, which does not depend on the size of the array. Hence, the space complexity is O(1).