Check if the sum of a subarray within a given range is a perfect square or not (original) (raw)
Last Updated : 09 Apr, 2021
Given an array arr[] of size N and an array range[], the task is to check if the sum of the subarray {range[0], .. , range[1]} is a perfect square or not. If the sum is a perfect square, then print the square root of the sum. Otherwise, print -1.
Example :
Input: arr[] = {2, 19, 33, 48, 90, 100}, range = [1, 3]
Output: 10
Explanation:
The sum of element from position 1 to position 3 is 19 + 33 + 48 = 100, which is a perfect square of 10.Input: arr[] = {13, 15, 30, 55, 87}, range = [0, 1]
Output: -1
Naive Approach: The simplest approach is to iterate over the subarray and check if the sum of the subarray is a perfect square or not.
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Binary Search to calculate the square root of the sum of the subarray. Follow the steps below:
- Calculate the sum of the subarray in the given range[].
- Now, use binary search to find the square root of the sum in the range 0 to sum.
- Find the mid element from the start and last value and compare the value of mid2 with the sum.
- If the valueof mid2 is equal to the sum, a perfect square is found, then return mid.
- If the value of mid2 is greater than the sum, then the answer can lie only on the right side of the range after the mid element. So recur for right and reduce the search space to 0 to mid - 1.
- If the value of mid2 is less than the sum, reduce the search space to mid + 1 to sum.
Below is the implementation of the above approach.
C++ `
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std;
// Function to calculate the square // root of the sum of a subarray in // a given range int checkForPerfectSquare(vector arr, int i, int j) { int mid, sum = 0;
// Calculate the sum of array
// elements within a given range
for (int m = i; m <= j; m++) {
sum += arr[m];
}
// Finding the square root
int low = 0, high = sum / 2;
while (low <= high) {
mid = low + (high - low) / 2;
// If a perfect square is found
if (mid * mid == sum) {
return mid;
}
// Reduce the search space if
// the value is greater than sum
else if (mid * mid > sum) {
high = mid - 1;
}
// Reduce the search space if
// the value if smaller than sum
else {
low = mid + 1;
}
}
return -1;
}
// Driver Code int main() { // Given Array vector arr; arr = { 2, 19, 33, 48, 90, 100 };
// Given range
int L = 1, R = 3;
// Function Call
cout << checkForPerfectSquare(arr, L, R);
return 0;
}
Java
// Java implementation of // the above approach import java.util.*; class GFG{
// Function to calculate the square // root of the sum of a subarray in // a given range static int checkForPerfectSquare(int []arr, int i, int j) { int mid, sum = 0;
// Calculate the sum of array // elements within a given range for (int m = i; m <= j; m++) { sum += arr[m]; }
// Finding the square root int low = 0, high = sum / 2; while (low <= high) { mid = low + (high - low) / 2;
// If a perfect square
// is found
if (mid * mid == sum)
{
return mid;
}
// Reduce the search space
// if the value is greater
// than sum
else if (mid * mid > sum)
{
high = mid - 1;
}
// Reduce the search space
// if the value if smaller
// than sum
else
{
low = mid + 1;
}
} return -1; }
// Driver Code public static void main(String[] args) { // Given Array int []arr = {2, 19, 33, 48, 90, 100};
// Given range int L = 1, R = 3;
// Function Call System.out.print( checkForPerfectSquare(arr, L, R)); } }
// This code is contributed by 29AjayKumar
Python3
Python3 implementation of
the above approach
Function to calculate the square
root of the sum of a subarray in
a given range
def checkForPerfectSquare(arr, i, j):
mid, sum = 0, 0
# Calculate the sum of array
# elements within a given range
for m in range(i, j + 1):
sum += arr[m]
# Finding the square root
low = 0
high = sum // 2
while (low <= high):
mid = low + (high - low) // 2
# If a perfect square is found
if (mid * mid == sum):
return mid
# Reduce the search space if
# the value is greater than sum
elif (mid * mid > sum):
high = mid - 1
# Reduce the search space if
# the value if smaller than sum
else:
low = mid + 1
return -1
Driver Code
if name == 'main':
# Given Array
arr = [ 2, 19, 33, 48, 90, 100 ]
# Given range
L = 1
R = 3
# Function call
print(checkForPerfectSquare(arr, L, R))
This code is contributed by mohit kumar 29
C#
// C# implementation of // the above approach using System; class GFG{
// Function to calculate the square // root of the sum of a subarray in // a given range static int checkForPerfectSquare(int []arr, int i, int j) { int mid, sum = 0;
// Calculate the sum of array // elements within a given range for (int m = i; m <= j; m++) { sum += arr[m]; }
// Finding the square root int low = 0, high = sum / 2; while (low <= high) { mid = low + (high - low) / 2;
// If a perfect square
// is found
if (mid * mid == sum)
{
return mid;
}
// Reduce the search space
// if the value is greater
// than sum
else if (mid * mid > sum)
{
high = mid - 1;
}
// Reduce the search space
// if the value if smaller
// than sum
else
{
low = mid + 1;
}
} return -1; }
// Driver Code public static void Main(String[] args) { // Given Array int []arr = {2, 19, 33, 48, 90, 100};
// Given range int L = 1, R = 3;
// Function Call Console.Write(checkForPerfectSquare(arr, L, R));} }
// This code is contributed by 29AjayKumar
JavaScript
`
Time Complexity: O(max(log(sum), N))
Auxiliary Space: O(1)