Combining a one and a twodimensional NumPy Array (original) (raw)

Combining a one and a two-dimensional NumPy Array

Last Updated : 01 Oct, 2020

Sometimes we need to combine 1-D and 2-D arrays and display their elements. Numpy has a function named as numpy.nditer(), which provides this facility.

Syntax: numpy.nditer(op, flags=None, op_flags=None, op_dtypes=None, order=’K’, casting=’safe’, op_axes=None, itershape=None, buffersize=0)

Example 1:

Python3

import numpy as np

num_1d = np.arange( 5 )

print ( "One dimensional array:" )

print (num_1d)

num_2d = np.arange( 10 ).reshape( 2 , 5 )

print ( "\nTwo dimensional array:" )

print (num_2d)

for a, b in np.nditer([num_1d, num_2d]):

`` print ( "%d:%d" % (a, b),)

Output:

One dimensional array: [0 1 2 3 4]

Two dimensional array: [[0 1 2 3 4] [5 6 7 8 9]] 0:0 1:1 2:2 3:3 4:4 0:5 1:6 2:7 3:8 4:9

Example 2:

Python3

import numpy as np

num_1d = np.arange( 7 )

print ( "One dimensional array:" )

print (num_1d)

num_2d = np.arange( 21 ).reshape( 3 , 7 )

print ( "\nTwo dimensional array:" )

print (num_2d)

for a, b in np.nditer([num_1d, num_2d]):

`` print ( "%d:%d" % (a, b),)

Output:

One dimensional array: [0 1 2 3 4 5 6]

Two dimensional array: [[ 0 1 2 3 4 5 6] [ 7 8 9 10 11 12 13] [14 15 16 17 18 19 20]] 0:0 1:1 2:2 3:3 4:4 5:5 6:6 0:7 1:8 2:9 3:10 4:11 5:12 6:13 0:14 1:15 2:16 3:17 4:18 5:19 6:20

Example 3:

Python3

import numpy as np

num_1d = np.arange( 2 )

print ( "One dimensional array:" )

print (num_1d)

num_2d = np.arange( 12 ).reshape( 6 , 2 )

print ( "\nTwo dimensional array:" )

print (num_2d)

for a, b in np.nditer([num_1d, num_2d]):

`` print ( "%d:%d" % (a, b),)

Output:

One dimensional array: [0 1]

Two dimensional array: [[ 0 1] [ 2 3] [ 4 5] [ 6 7] [ 8 9] [10 11]] 0:0 1:1 0:2 1:3 0:4 1:5 0:6 1:7 0:8 1:9 0:10 1:11

Similar Reads

Introduction







Creating NumPy Array













NumPy Array Manipulation


















Matrix in NumPy


















Operations on NumPy Array




Reshaping NumPy Array















Indexing NumPy Array






Arithmetic operations on NumPyArray










Linear Algebra in NumPy Array