Convert given lower triangular Matrix to 1D array (original) (raw)

Last Updated : 23 Dec, 2022

Given a lower triangular matrix M[][] of dimension N * N, the task is to convert it into a one-dimensional array by storing only non-zero elements.

Examples:

Input: M[][] = {{1, 0, 0, 0}, {2, 3, 0, 0}, {4, 5, 6, 0}, {7, 8, 9, 10}}
Output:
Row-wise: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Column-wise: {1, 2, 4, 7, 3, 5, 8, 6, 9, 10}
Explanation: All the non-zero elements of the matrix are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Arranging these elements in row-wise manner in a 1D array generates the sequence {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Arranging these elements in column-wise manner in a 1D array generates the sequence {1, 2, 4, 7, 3, 5, 8, 6, 9, 10}.

Input: M[][] = {{1, 0, 0, }, {2, 3, 0}, {4, 5, 6}}
Output:
Row-wise: {1, 2, 3, 4, 5, 6}
Column-wise: {1, 2, 4, 3, 5, 6}

**Approach:**To convert a 2-dimensional matrix to a 1-dimensional array following two methods are used:

Row - Major Order:

Index of matrix element at position (i, j) = ((i * (i - 1))/2 + j - 1)
where 1 ? i, j ? N and i ? j

Column - Major Order:

Index of matrix element at position (i, j) = (N * (j - 1) - ((j - 2) * (j - 1))/2) + (i - j)
where 1 ? i, j ? N and i ? j.

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++ `

// C++ program for the above approach #include using namespace std;

// Class of Lower Triangular Matrix class LTMatrix {

private: // Size of Matrix int n;

// Pointer
int* A;

// Stores the count of non-zero
// elements
int tot;

public: // Constructor LTMatrix(int N) { this->n = N; tot = N * (N + 1) / 2; A = new int[N * (N + 1) / 2]; }

// Destructor
~LTMatrix() { delete[] A; }

// Function to display array
void Display(bool row = true);

// Function to generate array
// in Row - Major order
void setRowMajor(int i, int j, int x);

// Function to generate array
// in Column - Major order
void setColMajor(int i, int j, int x);

// Function to find size of array
int getN() { return n; }

};

// Function to generate array from // given matrix by storing elements // in column major order void LTMatrix::setColMajor(int i, int j, int x) { if (i >= j) {

    int index
        = (n * (j - 1) - (((j - 2) * (j - 1)) / 2))
          + (i - j);

    A[index] = x;
}

}

// Function to generate array from // given matrix by storing elements // in row major order void LTMatrix::setRowMajor(int i, int j, int x) { if (i >= j) { int index = (i * (i - 1)) / 2 + j - 1; A[index] = x; } }

// Function to display array elements void LTMatrix::Display(bool row) { for (int i = 0; i < tot; i++) { cout << A[i] << " "; } cout << endl; }

// Function to generate and display // array in Row-Major Order void displayRowMajor(int N) { LTMatrix rm(N);

// Generate the array in the
// row-major form
rm.setRowMajor(1, 1, 1);
rm.setRowMajor(2, 1, 2);
rm.setRowMajor(2, 2, 3);
rm.setRowMajor(3, 1, 4);
rm.setRowMajor(3, 2, 5);
rm.setRowMajor(3, 3, 6);
rm.setRowMajor(4, 1, 7);
rm.setRowMajor(4, 2, 8);
rm.setRowMajor(4, 3, 9);
rm.setRowMajor(4, 4, 10);

// Display array elements
// in row-major order
cout << "Row-Wise:\n";

rm.Display();

}

// Function to generate and display // array in Column-Major Order void displayColMajor(int N) { LTMatrix cm(N);

// Generate array in
// column-major form
cm.setColMajor(1, 1, 1);
cm.setColMajor(2, 1, 2);
cm.setColMajor(2, 2, 3);
cm.setColMajor(3, 1, 4);
cm.setColMajor(3, 2, 5);
cm.setColMajor(3, 3, 6);
cm.setColMajor(4, 1, 7);
cm.setColMajor(4, 2, 8);
cm.setColMajor(4, 3, 9);
cm.setColMajor(4, 4, 10);

// Display array elements
// in column-major form
cout << "Column-Wise:\n";
cm.Display(false);

}

// Driver Code int main() { // Size of row or column // of square matrix int N = 4;

// Function Call for row major
// mapping
displayRowMajor(N);

// Function Call for column
// major mapping
displayColMajor(N);

return 0;

}

Java

// Java program for the above approach import java.io.*; class GFG {

// Class of Lower Triangular Matrix
static class LTMatrix {

    // Size of Matrix
    static int n;

    // Pointer
    static int A[];

    // Stores the count of non-zero
    // elements
    static int tot;

    // Constructor
    LTMatrix(int N)
    {
        this.n = N;
        tot = N * (N + 1) / 2;
        A = new int[N * (N + 1) / 2];
    }

    // Function to display array elements
    static void Display(boolean row)
    {
        for (int i = 0; i < tot; i++) {
            System.out.print(A[i] + " ");
        }
        System.out.println();
    }

    // Function to generate array from
    // given matrix by storing elements
    // in row major order
    static void setRowMajor(int i, int j, int x)
    {
        if (i >= j) {
            int index = (i * (i - 1)) / 2 + j - 1;
            A[index] = x;
        }
    }

    // Function to generate array from
    // given matrix by storing elements
    // in column major order
    static void setColMajor(int i, int j, int x)
    {
        if (i >= j) {

            int index = (n * (j - 1)
                         - (((j - 2) * (j - 1)) / 2))
                        + (i - j);
            A[index] = x;
        }
    }

    // Function to find size of array
    static int getN() { return n; }
}

// Function to generate and display
// array in Row-Major Order
static void displayRowMajor(int N)
{
    LTMatrix rm = new LTMatrix(N);

    // Generate the array in the
    // row-major form
    rm.setRowMajor(1, 1, 1);
    rm.setRowMajor(2, 1, 2);
    rm.setRowMajor(2, 2, 3);
    rm.setRowMajor(3, 1, 4);
    rm.setRowMajor(3, 2, 5);
    rm.setRowMajor(3, 3, 6);
    rm.setRowMajor(4, 1, 7);
    rm.setRowMajor(4, 2, 8);
    rm.setRowMajor(4, 3, 9);
    rm.setRowMajor(4, 4, 10);

    // Display array elements
    // in row-major order
    System.out.println("Row-Wise:");
    rm.Display(false);
}

// Function to generate and display
// array in Column-Major Order
static void displayColMajor(int N)
{
    LTMatrix cm = new LTMatrix(N);

    // Generate array in
    // column-major form
    cm.setColMajor(1, 1, 1);
    cm.setColMajor(2, 1, 2);
    cm.setColMajor(2, 2, 3);
    cm.setColMajor(3, 1, 4);
    cm.setColMajor(3, 2, 5);
    cm.setColMajor(3, 3, 6);
    cm.setColMajor(4, 1, 7);
    cm.setColMajor(4, 2, 8);
    cm.setColMajor(4, 3, 9);
    cm.setColMajor(4, 4, 10);

    // Display array elements
    // in column-major form
    System.out.println("Column-Wise:");
    cm.Display(false);
}

// Driver Code
public static void main(String[] args)
{

    // Size of row or column
    // of square matrix
    int N = 4;

    // Function Call for row major
    // mapping
    displayRowMajor(N);

    // Function Call for column
    // major mapping
    displayColMajor(N);
}

}

// This code is contributed by Dharanendra L V.

Python3

Python3 program for the above approach

Class of Lower Triangular Matrix

class LTMatrix:

# Constructor
def __init__(self, N):

    self.n = N;
    self.tot = N * (N + 1) // 2;
    self.A = [None] * (int(N * (N + 1) / 2));

# Function to display array elements
def Display(self, row):
    for i in range(int(self.tot)):
        print(self.A[i], end = " ")
    print()

# Function to generate array from
# given matrix by storing elements
# in row major order
def setRowMajor(self, i, j, x):

    if (i >= j):
        index = (i * (i - 1)) // 2 + j - 1;
        self.A[index] = x;
    
# Function to generate array from
# given matrix by storing elements
# in column major order
def setColMajor(self, i, j, x):

    if (i >= j) :

        index =int((self.n * (j - 1)
                          - (((j - 2) * (j - 1)) / 2))
                         + (i - j));
        self.A[index] = x;
    
# Function to find size of array
def getN(self):
    return self.n; 

Function to generate and display

array in Row-Major Order

def displayRowMajor(N):

rm = LTMatrix(N);

# Generate the array in the
# row-major form
rm.setRowMajor(1, 1, 1);
rm.setRowMajor(2, 1, 2);
rm.setRowMajor(2, 2, 3);
rm.setRowMajor(3, 1, 4);
rm.setRowMajor(3, 2, 5);
rm.setRowMajor(3, 3, 6);
rm.setRowMajor(4, 1, 7);
rm.setRowMajor(4, 2, 8);
rm.setRowMajor(4, 3, 9);
rm.setRowMajor(4, 4, 10);

# Display array elements
# in row-major order
print("Row-Wise:");
rm.Display(False);

Function to generate and display

array in Column-Major Order

def displayColMajor(N):

cm = LTMatrix(N);

# Generate array in
# column-major form
cm.setColMajor(1, 1, 1);
cm.setColMajor(2, 1, 2);
cm.setColMajor(2, 2, 3);
cm.setColMajor(3, 1, 4);
cm.setColMajor(3, 2, 5);
cm.setColMajor(3, 3, 6);
cm.setColMajor(4, 1, 7);
cm.setColMajor(4, 2, 8);
cm.setColMajor(4, 3, 9);
cm.setColMajor(4, 4, 10);

# Display array elements
# in column-major form
print("Column-Wise:");
cm.Display(False);

Driver Code

Size of row or column

of square matrix

N = 4;

Function Call for row major

mapping

displayRowMajor(N);

Function Call for column

major mapping

displayColMajor(N);

This code is contributed by phasing17

C#

// C# program for the above approach using System;

public class LTMatrix {

// Size of Matrix
static int n;

// Pointer
static int[] A;

// Stores the count of non-zero
// elements
static int tot;

// Constructor
public LTMatrix(int N)
{
    n = N;
    tot = N * (N + 1) / 2;
    A = new int[N * (N + 1) / 2];
}

// Function to display array elements
public void Display(Boolean row)
{
    for (int i = 0; i < tot; i++) {
        Console.Write(A[i] + " ");
    }
    Console.Write("");
}

// Function to generate array from
// given matrix by storing elements
// in row major order
public void setRowMajor(int i, int j, int x)
{
    if (i >= j) {
        int index = (i * (i - 1)) / 2 + j - 1;
        A[index] = x;
    }
}

// Function to generate array from
// given matrix by storing elements
// in column major order
public void setColMajor(int i, int j, int x)
{
    if (i >= j) {

        int index
            = (n * (j - 1) - (((j - 2) * (j - 1)) / 2))
              + (i - j);
        A[index] = x;
    }
}

// Function to find size of array
static int getN() { return n; }

} class GFG {

// Class of Lower Triangular Matrix

// Function to generate and display
// array in Row-Major Order
static void displayRowMajor(int N)
{
    LTMatrix rm = new LTMatrix(N);

    // Generate the array in the
    // row-major form
    rm.setRowMajor(1, 1, 1);
    rm.setRowMajor(2, 1, 2);
    rm.setRowMajor(2, 2, 3);
    rm.setRowMajor(3, 1, 4);
    rm.setRowMajor(3, 2, 5);
    rm.setRowMajor(3, 3, 6);
    rm.setRowMajor(4, 1, 7);
    rm.setRowMajor(4, 2, 8);
    rm.setRowMajor(4, 3, 9);
    rm.setRowMajor(4, 4, 10);

    // Display array elements
    // in row-major order
    Console.WriteLine("Row-Wise:");
    rm.Display(false);
}

// Function to generate and display
// array in Column-Major Order
static void displayColMajor(int N)
{
    LTMatrix cm = new LTMatrix(N);

    // Generate array in
    // column-major form
    cm.setColMajor(1, 1, 1);
    cm.setColMajor(2, 1, 2);
    cm.setColMajor(2, 2, 3);
    cm.setColMajor(3, 1, 4);
    cm.setColMajor(3, 2, 5);
    cm.setColMajor(3, 3, 6);
    cm.setColMajor(4, 1, 7);
    cm.setColMajor(4, 2, 8);
    cm.setColMajor(4, 3, 9);
    cm.setColMajor(4, 4, 10);

    // Display array elements
    // in column-major form
    Console.WriteLine("\nColumn-Wise:");
    cm.Display(false);
}

// Driver Code
public static void Main()
{

    // Size of row or column
    // of square matrix
    int N = 4;

    // Function Call for row major
    // mapping
    displayRowMajor(N);

    // Function Call for column
    // major mapping
    displayColMajor(N);
}

}

// This code is contributed by Saurabh Jaiswal

JavaScript

// JS program for the above approach

// Class of Lower Triangular Matrix class LTMatrix { // Constructor constructor(N) { this.n = N; this.tot = N * (N + 1) / 2; this.A = new Array(Math.floor(N * (N + 1) / 2)); }

// Function to display array elements
Display(row)
{
    for (var i = 0; i < this.tot; i++) {
        process.stdout.write(this.A[i] + " ");
    }
    console.log();
}

// Function to generate array from
// given matrix by storing elements
// in row major order
setRowMajor(i, j, x)
{
    if (i >= j) {
        let index = (i * (i - 1)) / 2 + j - 1;
        this.A[index] = x;
    }
}

// Function to generate array from
// given matrix by storing elements
// in column major order
setColMajor(i, j, x)
{
    if (i >= j) {

        var index
            = Math.floor((this.n * (j - 1)
                          - (((j - 2) * (j - 1)) / 2))
                         + (i - j));
        this.A[index] = x;
    }
}

// Function to find size of array
getN() { return this.n; }

}

// Function to generate and display // array in Row-Major Order function displayRowMajor(N) { let rm = new LTMatrix(N);

// Generate the array in the
// row-major form
rm.setRowMajor(1, 1, 1);
rm.setRowMajor(2, 1, 2);
rm.setRowMajor(2, 2, 3);
rm.setRowMajor(3, 1, 4);
rm.setRowMajor(3, 2, 5);
rm.setRowMajor(3, 3, 6);
rm.setRowMajor(4, 1, 7);
rm.setRowMajor(4, 2, 8);
rm.setRowMajor(4, 3, 9);
rm.setRowMajor(4, 4, 10);

// Display array elements
// in row-major order
console.log("Row-Wise:");
rm.Display(false);

}

// Function to generate and display // array in Column-Major Order function displayColMajor(N) { let cm = new LTMatrix(N);

// Generate array in
// column-major form
cm.setColMajor(1, 1, 1);
cm.setColMajor(2, 1, 2);
cm.setColMajor(2, 2, 3);
cm.setColMajor(3, 1, 4);
cm.setColMajor(3, 2, 5);
cm.setColMajor(3, 3, 6);
cm.setColMajor(4, 1, 7);
cm.setColMajor(4, 2, 8);
cm.setColMajor(4, 3, 9);
cm.setColMajor(4, 4, 10);

// Display array elements
// in column-major form
console.log("Column-Wise:");
cm.Display(false);

}

// Driver Code

// Size of row or column // of square matrix let N = 4;

// Function Call for row major // mapping displayRowMajor(N);

// Function Call for column // major mapping displayColMajor(N);

// This code is contributed by phasing17

`

Output:

Row-Wise: 1 2 3 4 5 6 7 8 9 10 Column-Wise: 1 2 4 7 3 5 8 6 9 10

Time Complexity: O(N2)
Auxiliary Space: O(N2)