Count number of ways to cover a distance (original) (raw)
Last Updated : 24 May, 2024
Given a distance 'dist', count total number of ways to cover the distance with 1, 2 and 3 steps.
**Examples:
**Input: n = 3
**Output: 4
**Explanation: Below are the four ways
=> 1 step + 1 step + 1 step
=> 1 step + 2 step
=> 2 step + 1 step
=> 3 step**Input: n = 4
**Output: 7
**Explanation: Below are the four ways
=> 1 step + 1 step + 1 step + 1 step
=> 1 step + 2 step + 1 step
=> 2 step + 1 step + 1 step
=> 1 step + 1 step + 2 step
=> 2 step + 2 step
=> 3 step + 1 step
=> 1 step + 3 step
**Count number of ways to cover a distance using **Recursion:
There are n stairs, and a person is allowed to next step, skip one position or skip two positions. So there are n positions. The idea is standing at the ith position the person can move by i+1, i+2, i+3 position. So a recursive function can be formed where at current index **i the function is recursively called for **i+1, i+2 and **i+3 positions.
There is another way of forming the recursive function. To reach position i, a person has to jump either from **i-1, i-2 or i-3 position where **i is the starting position.
Step by step approach:
- Create a recursive function (_count(int n)) which takes only one parameter.
- Check the base cases. If the value of **n is less than **0 then return **0, and if value of **n is equal to zero then return 1 as it is the starting position.
- Call the function recursively with values *n-1, n-2 and *n-3 and sum up the values that are returned, i.e. **sum = count(n-1) + count(n-2) + count(n-3)***.*
- Return the value of **sum.
Below are the implementation of the above approach:
C++ `
// A naive recursive C++ program to count number of ways to // cover a distance with 1, 2 and 3 steps #include using namespace std;
// Returns count of ways to cover 'dist' int printCountRec(int dist) { // Base cases if (dist < 0) return 0; if (dist == 0) return 1;
// Recur for all previous 3 and add the results
return printCountRec(dist - 1) + printCountRec(dist - 2)
+ printCountRec(dist - 3);
}
// driver program int main() { int dist = 4; cout << printCountRec(dist); return 0; }
Java
// A naive recursive Java program to count number // of ways to cover a distance with 1, 2 and 3 steps import java.io.*;
class GFG
{
// Function returns count of ways to cover 'dist'
static int printCountRec(int dist)
{
// Base cases
if (dist<0)
return 0;
if (dist==0)
return 1;
// Recur for all previous 3 and add the results
return printCountRec(dist-1) +
printCountRec(dist-2) +
printCountRec(dist-3);
}
// driver program
public static void main (String[] args)
{
int dist = 4;
System.out.println(printCountRec(dist));
}
}
// This code is contributed by Pramod Kumar
Python
A naive recursive Python3 program
to count number of ways to cover
a distance with 1, 2 and 3 steps
Returns count of ways to
cover 'dist'
def printCountRec(dist):
# Base cases
if dist < 0:
return 0
if dist == 0:
return 1
# Recur for all previous 3 and
add the results
return (printCountRec(dist-1) +
printCountRec(dist-2) +
printCountRec(dist-3))
Driver code
dist = 4 print(printCountRec(dist))
This code is contributed by Anant Agarwal.
C#
// A naive recursive C# program to // count number of ways to cover a // distance with 1, 2 and 3 steps using System;
class GFG {
// Function returns count of
// ways to cover 'dist'
static int printCountRec(int dist)
{
// Base cases
if (dist < 0)
return 0;
if (dist == 0)
return 1;
// Recur for all previous 3
// and add the results
return printCountRec(dist - 1) +
printCountRec(dist - 2) +
printCountRec(dist - 3);
}
// Driver Code
public static void Main ()
{
int dist = 4;
Console.WriteLine(printCountRec(dist));
}
}
// This code is contributed by Sam007.
JavaScript
// A naive recursive javascript program to count number of ways to cover // a distance with 1, 2 and 3 steps
// Returns count of ways to cover 'dist' function printCountRec(dist) { // Base cases if (dist<0) return 0; if (dist==0) return 1;
// Recur for all previous 3 and add the results
return printCountRec(dist-1) +
printCountRec(dist-2) +
printCountRec(dist-3);
}
// driver program var dist = 4; console.log(printCountRec(dist));
`
**Time Complexity: O(3n), the time complexity of the above solution is exponential, a close upper bound is O(3n). From each state 3, a recursive function is called. So the upper bound for n states is O(3n).
**Auxiliary Space: O(1), No extra space is required.
Count number of ways to cover a distance using Dynamic Programming (Memoization):
The problem have overlapping subproblems, meaning that the same subproblems are encountered multiple times during the recursive computation. For example, when calculating the number of ways to cover distance 'dist', we need to calculate the number of ways to cover distances 'dist-1', 'dist-2', and 'dist-3'. These subproblems are also encountered when calculating the number of ways to cover distances 'dist-2' and 'dist-3'.
**Memoization solve this issue by storing the results of previously computed subproblems in a data structure, typically an array or a hash table.
Before making a recursive call, we first check if the result for the current distance has already been computed and stored in the **memo[] array. If it has, we directly return the stored result, avoiding the recursive call. This significantly reduces the number of recursive calls and improves the performance of the algorithm, especially for larger distances. Once the result for the current distance is computed, we store it in the **memo[] array for future reference.
Below is the implementation of the above approach:
C++ `
#include #include using namespace std;
// Returns count of ways to cover 'dist' using memoization int printCountRecMemo(int dist, vector& memo) { // Base cases if (dist < 0) return 0; if (dist == 0) return 1;
// Check if the value for 'dist' is already computed
if (memo[dist] != -1)
return memo[dist];
// Recur for all previous 3 and add the results
int ways = printCountRecMemo(dist - 1, memo)
+ printCountRecMemo(dist - 2, memo)
+ printCountRecMemo(dist - 3, memo);
// Memoize the result for 'dist' for future use
memo[dist] = ways;
return ways;
}
// Function to calculate the count of ways with memoization int countWays(int dist) { vector memo( dist + 1, -1); // Initialize memoization array with -1 return printCountRecMemo(dist, memo); }
// Driver program int main() { int dist = 4; cout << countWays(dist); return 0; }
Java
import java.util.Arrays;
public class Main {
// Function to calculate the count of ways with memoization
static int countWays(int dist) {
int[] memo = new int[dist + 1]; // Initialize memoization array with 0s
Arrays.fill(memo, -1); // Set all elements to -1 to indicate not computed yet
return printCountRecMemo(dist, memo);
}
// Recursive function to calculate the count of ways to cover 'dist' using memoization
static int printCountRecMemo(int dist, int[] memo) {
// Base cases
if (dist < 0)
return 0;
if (dist == 0)
return 1;
// Check if the value for 'dist' is already computed
if (memo[dist] != -1)
return memo[dist];
// Recur for all previous 3 and add the results
int ways = printCountRecMemo(dist - 1, memo)
+ printCountRecMemo(dist - 2, memo)
+ printCountRecMemo(dist - 3, memo);
// Memoize the result for 'dist' for future use
memo[dist] = ways;
return ways;
}
// Driver program
public static void main(String[] args) {
int dist = 4;
System.out.println(countWays(dist));
}
}
Python
Function to calculate the count of ways to cover 'dist' using memoization
def printCountRecMemo(dist, memo): # Base cases if dist < 0: return 0 if dist == 0: return 1
# Check if the value for 'dist' is already computed
if memo[dist] != -1:
return memo[dist]
# Recur for all previous 3 and add the results
ways = printCountRecMemo(dist - 1, memo) \
+ printCountRecMemo(dist - 2, memo) \
+ printCountRecMemo(dist - 3, memo)
# Memoize the result for 'dist' for future use
memo[dist] = ways
return ways
Function to calculate the count of ways with memoization
def countWays(dist): memo = [-1] * (dist + 1) # Initialize memoization list with -1 return printCountRecMemo(dist, memo)
Driver program
if name == "main": dist = 4 print(countWays(dist))
JavaScript
// Function to calculate the count of ways with memoization function countWays(dist) { let memo = new Array(dist + 1).fill(-1); // Initialize memoization array with -1s
// Recursive function to calculate the count of ways to cover 'dist' using memoization
function printCountRecMemo(dist, memo) {
// Base cases
if (dist < 0)
return 0;
if (dist === 0)
return 1;
// Check if the value for 'dist' is already computed
if (memo[dist] !== -1)
return memo[dist];
// Recur for all previous 3 and add the results
let ways = printCountRecMemo(dist - 1, memo)
+ printCountRecMemo(dist - 2, memo)
+ printCountRecMemo(dist - 3, memo);
// Memoize the result for 'dist' for future use
memo[dist] = ways;
return ways;
}
// Call recursive function with memoization
return printCountRecMemo(dist, memo);
}
// Driver program let dist = 4; console.log(countWays(dist));
`
**Time Complexity: O(n)
**Auxiliary Space: O(n)
Count number of ways to cover a distance using Dynamic Programming (Tabluation):
We start by initializing the base cases for covering distances 0, 1, and 2. For distance 0, there is only one way to cover it (do nothing). For distance 1, there is also only one way to cover it (take a step of size 1). For distance 2, there are two ways to cover it (take two steps of size 1 or take a step of size 2).
We use a bottom-up approach to fill in the **count[] array. For each entry **count[i], we compute the number of ways to cover distance **i by adding the number of ways to cover distances **i-1, i-2, and **i-3.
Finally, we return the value of **count[dist], which represents the number of ways to cover the given distance.
Below is the implementation of the above approach:
C++ `
// A Dynamic Programming based C++ program to count number of ways // to cover a distance with 1, 2 and 3 steps #include using namespace std;
int printCountDP(int dist) { int count[dist+1];
// Initialize base values. There is one way to cover 0 and 1
// distances and two ways to cover 2 distance
count[0] = 1;
if(dist >= 1)
count[1] = 1;
if(dist >= 2)
count[2] = 2;
// Fill the count array in bottom up manner
for (int i=3; i<=dist; i++)
count[i] = count[i-1] + count[i-2] + count[i-3];
return count[dist];
}
// driver program int main() { int dist = 4; cout << printCountDP(dist); return 0; }
Java
// A Dynamic Programming based Java program // to count number of ways to cover a distance // with 1, 2 and 3 steps import java.io.*;
class GFG { // Function returns count of ways to cover 'dist' static int printCountDP(int dist) { int[] count = new int[dist+1];
// Initialize base values. There is one way to
// cover 0 and 1 distances and two ways to
// cover 2 distance
count[0] = 1;
if(dist >= 1)
count[1] = 1;
if(dist >= 2)
count[2] = 2;
// Fill the count array in bottom up manner
for (int i=3; i<=dist; i++)
count[i] = count[i-1] + count[i-2] + count[i-3];
return count[dist];
}
// driver program
public static void main (String[] args)
{
int dist = 4;
System.out.println(printCountDP(dist));
}
}
// This code is contributed by Pramod Kumar
Python
A Dynamic Programming based on Python3
program to count number of ways to
cover a distance with 1, 2 and 3 steps
def printCountDP(dist): count = [0] * (dist + 1)
# Initialize base values. There is
# one way to cover 0 and 1 distances
# and two ways to cover 2 distance
count[0] = 1
if dist >= 1 :
count[1] = 1
if dist >= 2 :
count[2] = 2
# Fill the count array in bottom
# up manner
for i in range(3, dist + 1):
count[i] = (count[i-1] +
count[i-2] + count[i-3])
return count[dist];
driver program
dist = 4; print( printCountDP(dist))
This code is contributed by Sam007.
C#
// A Dynamic Programming based C# program // to count number of ways to cover a distance // with 1, 2 and 3 steps using System;
class GFG {
// Function returns count of ways
// to cover 'dist'
static int printCountDP(int dist)
{
int[] count = new int[dist + 1];
// Initialize base values. There is one
// way to cover 0 and 1 distances
// and two ways to cover 2 distance
count[0] = 1;
count[1] = 1;
count[2] = 2;
// Fill the count array
// in bottom up manner
for (int i = 3; i <= dist; i++)
count[i] = count[i - 1] +
count[i - 2] +
count[i - 3];
return count[dist];
}
// Driver Code
public static void Main ()
{
int dist = 4;
Console.WriteLine(printCountDP(dist));
}
}
// This code is contributed by Sam007.
JavaScript
// A Dynamic Programming based Javascript program // to count number of ways to cover a distance // with 1, 2 and 3 steps
// Function returns count of ways // to cover 'dist' function printCountDP(dist) { let count = new Array(dist + 1);
// Initialize base values. There is one
// way to cover 0 and 1 distances
// and two ways to cover 2 distance
count[0] = 1;
if (dist >= 1)
count[1] = 1;
if (dist >= 2)
count[2] = 2;
// Fill the count array
// in bottom up manner
for(let i = 3; i <= dist; i++)
count[i] = count[i - 1] +
count[i - 2] +
count[i - 3];
return count[dist];
}
// Driver code let dist = 4; console.log(printCountDP(dist));
// This code is contributed by divyeshrabadiya07
PHP
`
**Time Complexity: O(n), Only one traversal of the array is needed.
**Auxiliary Space: O(n), To store the values in a DP O(n) extra space is needed.
Count number of ways to cover a distance using Contant Space O(1):
From the above solution, we can observe that only three previous states are required to compute the value of current state. So, creates an array of size 3, where each element represents the number of ways to reach a certain distance. The base cases are initialized to 1 for distance 0 and 1, and 2 for distance 2. The remaining elements are filled using the recurrence relation, which states that the number of ways to reach a certain distance is the sum of the number of ways to reach the previous three distances. The final answer is the number of ways to reach the given distance, which is stored in the last element of the array.
Below is the implementation of the above approach:
C++ `
// A Dynamic Programming based C++ program to count number of ways #include using namespace std;
int printCountDP(int dist) { //Create the array of size 3. int ways[3] , n = dist;
//Initialize the bases cases
ways[0] = 1;
ways[1] = 1;
ways[2] = 2;
//Run a loop from 3 to n
//Bottom up approach to fill the array
for(int i=3 ;i<=n ;i++)
ways[i%3] = ways[(i-1)%3] + ways[(i-2)%3] + ways[(i-3)%3];
return ways[n%3];
}
// driver program int main() { int dist = 4; cout << printCountDP(dist); return 0; }
Java
// A Dynamic Programming based Java program to count number of ways import java.util.*;
class GFG {
static int printCountDP(int dist) { // Create the array of size 3. int []ways = new int[3]; int n = dist;
// Initialize the bases cases
ways[0] = 1;
ways[1] = 1;
ways[2] = 2;
// Run a loop from 3 to n
// Bottom up approach to fill the array
for(int i=3 ;i<=n ;i++)
ways[i%3] = ways[(i-1)%3] + ways[(i-2)%3] + ways[(i-3)%3];
return ways[n%3];
}
// driver program public static void main(String arg[]) { int dist = 4; System.out.print(printCountDP(dist)); } }
// this code is contributed by shivanisinghss2110
Python
A Dynamic Programming based C++ program to count number of ways
def prCountDP( dist):
# Create the array of size 3.
ways = [0]*3
n = dist
# Initialize the bases cases
ways[0] = 1
ways[1] = 1
ways[2] = 2
# Run a loop from 3 to n
# Bottom up approach to fill the array
for i in range(3, n + 1):
ways[i % 3] = ways[(i - 1) % 3] + ways[(i - 2) % 3] + ways[(i - 3) % 3]
return ways[n % 3]
driver program
dist = 4 print(prCountDP(dist))
This code is contributed by shivanisinghss2110
C#
// A Dynamic Programming based C# // program to count number of ways using System;
class GFG{
static int printCountDP(int dist) { // Create the array of size 3. int []ways = new int[3]; int n = dist;
// Initialize the bases cases
ways[0] = 1;
ways[1] = 1;
ways[2] = 2;
// Run a loop from 3 to n
// Bottom up approach to fill the array
for(int i = 3; i <= n; i++)
ways[i % 3] = ways[(i - 1) % 3] +
ways[(i - 2) % 3] +
ways[(i - 3) % 3];
return ways[n % 3];
}
// Driver code public static void Main(String []arg) { int dist = 4;
Console.Write(printCountDP(dist));
} }
// This code is contributed by shivanisinghss2110
JavaScript
// A Dynamic Programming based javascript program to count number of ways
function printCountDP( dist) { //Create the array of size 3. var ways= [] , n = dist; ways.length = 3 ;
//Initialize the bases cases
ways[0] = 1;
ways[1] = 1;
ways[2] = 2;
//Run a loop from 3 to n
//Bottom up approach to fill the array
for(var i=3 ;i<=n ;i++)
ways[i%3] = ways[(i-1)%3] + ways[(i-2)%3] + ways[(i-3)%3];
return ways[n%3];
}
// driver code
var dist = 4;
console.write(printCountDP(dist));
`
**Time Complexity: O(n).
**Auxiliary Space: O(1)