Create pandas dataframe from lists using dictionary (original) (raw)

Last Updated : 21 Jul, 2022

Pandas DataFrame is a 2-dimensional labeled data structure like any table with rows and columns. The size and values of the dataframe are mutable, i.e., can be modified. It is the most commonly used pandas object. Creating pandas data-frame from lists using dictionary can be achieved in multiple ways. Let’s discuss different ways to create a DataFrame one by one.

Method #1: Creating DataFrame using dictionary of lists

With this method in Pandas, we can transform a dictionary of lists into a dataframe.

Python3

import pandas as pd

dict = { 'name' :["aparna", "pankaj", "sudhir", "Geeku"],

`` 'degree' : ["MBA", "BCA", "M.Tech", "MBA"],

`` 'score' :[ 90 , 40 , 80 , 98 ]}

df = pd.DataFrame( dict )

df

Output: As is evident from the output, the keys of a dictionary is converted into columns of a dataframe whereas the elements in lists are converted into rows.

Adding index to a dataframe explicitly:

Python3

import pandas as pd

dict = { 'name' :[ 'aparna' , 'pankaj' , 'sudhir' , 'Geeku' ],

`` 'degree' : [ 'MBA' , 'BCA' , 'M.Tech' , 'MBA' ],

`` 'score' :[ 90 , 40 , 80 , 98 ]}

df = pd.DataFrame( dict ,index = [ 'Rollno1' , 'Rollno2' , 'Rollno3' , 'Rollno4' ])

df

Output:

Method #2: Using from_dict() function

Python3

import pandas as pd

dict = { 'name' :["aparna", "pankaj", "sudhir", "Geeku"],

`` 'degree' : ["MBA", "BCA", "M.Tech", "MBA"],

`` 'score' :[ 90 , 40 , 80 , 98 ]}

df = pd.DataFrame.from_dict( dict )

df

Output:

Method#3 : Creating dataframe by passing lists variables to dictionary

Python3

import pandas as pd

name = [ 'aparna' , 'pankaj' , 'sudhir' , 'Geeku' ]

degree = [ 'MBA' , 'BCA' , 'M.Tech' , 'MBA' ]

score = [ 90 , 40 , 80 , 98 ]

dict = { 'name' :name,

`` 'degree' :degree ,

`` 'score' :score}

df = pd.DataFrame( dict ,index = [ 'Rollno1' , 'Rollno2' , 'Rollno3' , 'Rollno4' ])

df

Output: