Difference of two columns in Pandas dataframe (original) (raw)

Last Updated : 24 Dec, 2018

Difference of two columns in pandas dataframe in Python is carried out by using following methods :

Method #1 : Using ” -” operator.

import pandas as pd

df1 = { 'Name' :[ 'George' , 'Andrea' , 'micheal' ,

`` 'maggie' , 'Ravi' , 'Xien' , 'Jalpa' ],

`` 'score1' :[ 62 , 47 , 55 , 74 , 32 , 77 , 86 ],

`` 'score2' :[ 45 , 78 , 44 , 89 , 66 , 49 , 72 ]}

df1 = pd.DataFrame(df1,columns = [ 'Name' , 'score1' , 'score2' ])

print ( "Given Dataframe :\n" , df1)

df1[ 'Score_diff' ] = df1[ 'score1' ] - df1[ 'score2' ]

print ( "\nDifference of score1 and score2 :\n" , df1)

Output:

Given Dataframe : Name score1 score2 0 George 62 45 1 Andrea 47 78 2 micheal 55 44 3 maggie 74 89 4 Ravi 32 66 5 Xien 77 49 6 Jalpa 86 72

Difference of score1 and score2 : Name score1 score2 Score_diff 0 George 62 45 17 1 Andrea 47 78 -31 2 micheal 55 44 11 3 maggie 74 89 -15 4 Ravi 32 66 -34 5 Xien 77 49 28 6 Jalpa 86 72 14

Method #2 : Using sub() method of the Dataframe.

import pandas as pd

df1 = { 'Name' :[ 'George' , 'Andrea' , 'micheal' ,

`` 'maggie' , 'Ravi' , 'Xien' , 'Jalpa' ],

`` 'score1' :[ 62 , 47 , 55 , 74 , 32 , 77 , 86 ],

`` 'score2' :[ 45 , 78 , 44 , 89 , 66 , 49 , 72 ]}

df1 = pd.DataFrame(df1,columns = [ 'Name' , 'score1' , 'score2' ])

print ( "Given Dataframe :\n" , df1)

df1[ 'Score_diff' ] = df1[ 'score1' ].sub(df1[ 'score2' ], axis = 0 )

print ( "\nDifference of score1 and score2 :\n" , df1)

Output:

Given Dataframe : Name score1 score2 0 George 62 45 1 Andrea 47 78 2 micheal 55 44 3 maggie 74 89 4 Ravi 32 66 5 Xien 77 49 6 Jalpa 86 72

Difference of score1 and score2 : Name score1 score2 Score_diff 0 George 62 45 17 1 Andrea 47 78 -31 2 micheal 55 44 11 3 maggie 74 89 -15 4 Ravi 32 66 -34 5 Xien 77 49 28 6 Jalpa 86 72 14

Similar Reads

Pandas DataFrame Practice Exercises



















Pandas Dataframe Rows Practice Exercise

















Pandas Dataframe Columns Practice Exercise



























Pandas Series Practice Exercise






Pandas Date and Time Practice Exercise




DataFrame String Manipulation




Accessing and Manipulating Data in DataFrame






DataFrame Visualization and Exporting