Different Ways to Create Numpy Arrays in Python (original) (raw)

Creating NumPy arrays is a fundamental aspect of working with numerical data in Python. NumPy provides various methods to create arrays efficiently, catering to different needs and scenarios. In this article, we will see how we can create NumPy arrays using different ways and methods.

Ways to Create Numpy Arrays

Below are some of the ways by which we can create NumPy Arrays in Python:

Create Numpy Arrays Using Lists or Tuples

The simplest way to create a NumPy array is by passing a Python list or tuple to the numpy.array() function. This method creates a one-dimensional array.

Python3 `

import numpy as np

my_list = [1, 2, 3, 4, 5] numpy_array = np.array(my_list) print("Simple NumPy Array:",numpy_array)

`

Initialize a Python NumPy Array Using Special Functions

NumPy provides several built-in functions to generate arrays with specific properties.

import numpy as np

zeros_array = np.zeros((2, 3)) ones_array = np.ones((3, 3)) constant_array = np.full((2, 2), 7) range_array = np.arange(0, 10, 2) # start, stop, step linspace_array = np.linspace(0, 1, 5) # start, stop, num

print("Zero Array:","\n",zeros_array) print("Ones Array:","\n",ones_array) print("Constant Array:","\n",constant_array) print("Range Array:","\n",range_array) print("Linspace Array:","\n",linspace_array)

`

Output

Zero Array [[0. 0. 0.] [0. 0. 0.]] Zero Array [[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] Constant Array [[7 7] [7 7]] Range Array [0 2 4 6 8] Linspace Array [0. 0.25 0.5 0.75 1. ]

Create Python Numpy Arrays Using Random Number Generation

NumPy provides functions to create arrays filled with random numbers.

import numpy as np

random_array = np.random.rand(2, 3) normal_array = np.random.randn(2, 2) randint_array = np.random.randint(1, 10, size=(2, 3))

print(random_array) print(normal_array) print(randint_array)

`

Output

[[0.87948864 0.55022063 0.29237533] [0.99475413 0.76666244 0.55240304]] [[ 1.77971899 0.67837749] [ 0.33101208 -1.04029635]] [[6 6 3] [8 5 8]]

Create Python Numpy Arrays Using Matrix Creation Routines

NumPy provides functions to create specific types of matrices.

import numpy as np

identity_matrix = np.eye(3) diagonal_array = np.diag([1, 2, 3]) zeros_like_array = np.zeros_like(diagonal_array) ones_like_array = np.ones_like(diagonal_array)

print(identity_matrix) print(diagonal_array) print(zeros_like_array) print(ones_like_array)

`

Output

[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] [[1 0 0] [0 2 0] [0 0 3]] [[0 0 0] [0 0 0] [0 0 0]] [[1 1 1] [1 1 1] [1 1 1]]