Get the QR factorization of a given NumPy array (original) (raw)

Last Updated : 29 Aug, 2020

In this article, we will discuss QR decomposition or QR factorization of a matrix. QR factorization of a matrix is the decomposition of a matrix say ‘A’ into ‘A=QR’ where Q is orthogonal and R is an upper-triangular matrix. We factorize the matrix using numpy.linalg.qr() function.

Syntax : numpy.linalg.qr(a, mode=’reduced’)

Parameters :

Below are some examples of how to use the above-described function :

Example 1: QR factorization of 2X2 matrix

Python3

import numpy as np

arr = np.array([[ 10 , 22 ],[ 13 , 6 ]])

q, r = np.linalg.qr(arr)

print ( "Decomposition of matrix:" )

print ( "q=\n" , q, "\nr=\n" , r)

Output :

Example 2: QR factorization of 2X4 matrix

Python3

import numpy as np

arr = np.array([[ 0 , 1 ], [ 1 , 0 ], [ 1 , 1 ], [ 2 , 2 ]])

q, r = np.linalg.qr(arr)

print ( "Decomposition of matrix:" )

print ( "q=\n" , q, "\nr=\n" , r)

Output :

Example 3: QR factorization of 3X3 matrix

Python3

import numpy as np

arr = np.array([[ 5 , 11 , - 15 ], [ 12 , 34 , - 51 ],

`` [ - 24 , - 43 , 92 ]], dtype = np.int32)

q, r = np.linalg.qr(arr)

print ( "Decomposition of matrix:" )

print ( "q=\n" , q, "\nr=\n" , r)

Output :

Similar Reads

Introduction







Creating NumPy Array













NumPy Array Manipulation


















Matrix in NumPy


















Operations on NumPy Array




Reshaping NumPy Array















Indexing NumPy Array






Arithmetic operations on NumPyArray










Linear Algebra in NumPy Array