Getting Unique values from a column in Pandas dataframe (original) (raw)
Last Updated : 15 Jan, 2019
Let’s see how can we retrieve the unique values from pandas dataframe.
Let’s create a dataframe from CSV file. We are using the past data of GDP from different countries. You can get the dataset from here.
import
pandas as pd
record
=
pd.read_csv(gapminder_csv_url)
record.head()
Method #1: Select the continent column from the record and apply the unique function to get the values as we want.
import
pandas as pd
record
=
pd.read_csv(gapminder_csv_url)
print
(record[
'continent'
].unique())
Output:
['Asia' 'Europe' 'Africa' 'Americas' 'Oceania']
Method #2: Select unique values from the _country_column.
import
pandas as pd
record
=
pd.read_csv(gapminder_csv_url)
print
(record.country.unique())
Output:
['Afghanistan' 'Albania' 'Algeria' 'Angola' 'Argentina' 'Australia' 'Austria' 'Bahrain' 'Bangladesh' 'Belgium' 'Benin' 'Bolivia' 'Bosnia and Herzegovina' 'Botswana' 'Brazil' 'Bulgaria' 'Burkina Faso' 'Burundi' 'Cambodia' 'Cameroon' 'Canada' 'Central African Republic' 'Chad' 'Chile' 'China' 'Colombia' 'Comoros' 'Congo Dem. Rep.' 'Congo Rep.' 'Costa Rica' "Cote d'Ivoire" 'Croatia' 'Cuba' 'Czech Republic' 'Denmark' 'Djibouti' 'Dominican Republic' 'Ecuador' 'Egypt' 'El Salvador' 'Equatorial Guinea' 'Eritrea' 'Ethiopia' 'Finland' 'France' 'Gabon' 'Gambia' 'Germany' 'Ghana' 'Greece' 'Guatemala' 'Guinea' 'Guinea-Bissau' 'Haiti' 'Honduras' 'Hong Kong China' 'Hungary' 'Iceland' 'India' 'Indonesia' 'Iran' 'Iraq' 'Ireland' 'Israel' 'Italy' 'Jamaica' 'Japan' 'Jordan' 'Kenya' 'Korea Dem. Rep.' 'Korea Rep.' 'Kuwait' 'Lebanon' 'Lesotho' 'Liberia' 'Libya' 'Madagascar' 'Malawi' 'Malaysia' 'Mali' 'Mauritania' 'Mauritius' 'Mexico' 'Mongolia' 'Montenegro' 'Morocco' 'Mozambique' 'Myanmar' 'Namibia' 'Nepal' 'Netherlands' 'New Zealand' 'Nicaragua' 'Niger' 'Nigeria' 'Norway' 'Oman' 'Pakistan' 'Panama' 'Paraguay' 'Peru' 'Philippines' 'Poland' 'Portugal' 'Puerto Rico' 'Reunion' 'Romania' 'Rwanda' 'Sao Tome and Principe' 'Saudi Arabia' 'Senegal' 'Serbia' 'Sierra Leone' 'Singapore' 'Slovak Republic' 'Slovenia' 'Somalia' 'South Africa' 'Spain' 'Sri Lanka' 'Sudan' 'Swaziland' 'Sweden' 'Switzerland' 'Syria' 'Taiwan' 'Tanzania' 'Thailand' 'Togo' 'Trinidad and Tobago' 'Tunisia' 'Turkey' 'Uganda' 'United Kingdom' 'United States' 'Uruguay' 'Venezuela' 'Vietnam' 'West Bank and Gaza' 'Yemen Rep.' 'Zambia' 'Zimbabwe']
Method #3:
In this method you can see that we use the dataframe inside the unique function as parameter although we select the same column as above so we get the same output.
import
pandas as pd
record
=
pd.read_csv(gapminder_csv_url)
print
(pd.unique(record[
'continent'
]))
Output:
['Asia' 'Europe' 'Africa' 'Americas' 'Oceania']
Similar Reads
- Pandas Exercises and Programs Pandas is an open-source Python Library that is made mainly for working with relational or labelled data both easily and intuitively. This Python library is built on top of the NumPy library, providing various operations and data structures for manipulating numerical data and time series. Pandas is 6 min read
- Different ways to create Pandas Dataframe It is the most commonly used Pandas object. The pd.DataFrame() function is used to create a DataFrame in Pandas. There are several ways to create a Pandas Dataframe in Python. Example: Creating a DataFrame from a Dictionary [GFGTABS] Python import pandas as pd # initialize data of lists. data = { 7 min read