How to access different rows of a multidimensional NumPy array? (original) (raw)
Last Updated : 11 Oct, 2020
Let us see how to access different rows of a multidimensional array in NumPy. Sometimes we need to access different rows of multidimensional NumPy array-like first row, the last two rows, and even the middle two rows, etc. In NumPy , it is very easy to access any rows of a multidimensional array. All we need to do is Slicing the array according to the given conditions. Whenever we need to perform analysis, slicing plays an important role.
Case 1: In 2-Dimensional arrays
Example 1: Accessing the First and Last row of a 2-D NumPy array
Python3
import
numpy as np
arr
=
np.array([[
10
,
20
,
30
],
`` [
40
,
5
,
66
],
`` [
70
,
88
,
94
]])
print
(
"Given Array :"
)
print
(arr)
res_arr
=
arr[[
0
,
2
]]
print
(
"\nAccessed Rows :"
)
print
(res_arr)
Output:
In the above example, we access and print the First and Last rows of the 3X3 NumPy array.
Example 2: Accessing the Middle row of 2-D NumPy array
Python3
import
numpy as np
arr
=
np.array([[
101
,
20
,
3
,
10
],
`` [
40
,
5
,
66
,
7
],
`` [
70
,
88
,
9
,
141
]])
print
(
"Given Array :"
)
print
(arr)
res_arr
=
arr[
1
]
print
(
"\nAccessed Row :"
)
print
(res_arr)
Output:
In the above example, we access and print the Middle row of the 3X4 NumPy array.
Example 3: Accessing the Last three rows of 2-D NuNumPy py array
Python3
import
numpy as np
arr
=
np.array([[
1
,
20
,
3
,
1
],
`` [
40
,
5
,
66
,
7
],
`` [
70
,
88
,
9
,
11
],
`` [
80
,
100
,
50
,
77
]])
print
(
"Given Array :"
)
print
(arr)
res_arr
=
arr[[
1
,
2
,
3
]]
print
(
"\nAccessed Rows :"
)
print
(res_arr)
Output:
In the above example, we access and print the last three rows of the 4X4 NumPy array.
Example 4: Accessing the First two rows of a 2-D NumPy array
Python3
import
numpy as np
arr
=
np.array([[
1
,
20
,
3
,
1
],
`` [
40
,
5
,
66
,
7
],
`` [
70
,
88
,
9
,
11
],
`` [
80
,
100
,
50
,
77
],
`` [
1
,
8.5
,
7.9
,
4.8
]])
print
(
"Given Array :"
)
print
(arr)
res_arr
=
arr[[
0
,
1
]]
print
(
"\nAccessed Rows :"
)
print
(res_arr)
Output:
In the above example, we access and print the First two rows of the 5X4 NumPy array.
Case 2: In 3-Dimensional arrays
Example 1: Accessing the Middle rows of 3-D NumPy array
Python3
import
numpy as np
n_arr
=
np.array([[[
10
,
25
,
70
], [
30
,
45
,
55
], [
20
,
45
,
7
]],
`` [[
50
,
65
,
8
], [
70
,
85
,
10
], [
11
,
22
,
33
]]])
print
(
"Given 3-D Array:"
)
print
(n_arr)
res_arr
=
n_arr[:,[
1
]]
print
(
"\nAccessed Rows :"
)
print
(res_arr)
Output:
In the above example, we access and print the Middle rows of the 3-D NumPy array.
Example 2: Accessing the First and Last rows of 3-D NumPy array
Python3
import
numpy as np
n_arr
=
np.array([[[
10
,
25
,
70
], [
30
,
45
,
55
], [
20
,
45
,
7
]],
`` [[
50
,
65
,
8
], [
70
,
85
,
10
], [
11
,
22
,
33
]],
`` [[
19
,
69
,
36
], [
1
,
5
,
24
], [
4
,
20
,
96
]]])
print
(
"Given 3-D Array:"
)
print
(n_arr)
res_arr
=
n_arr[:,[
0
,
2
]]
print
(
"\nAccessed Rows :"
)
print
(res_arr)
Output:
In the above example, we access and print the First and Last rows of the 3-D NumPy array.