Insertion Sort Algorithm (original) (raw)

Last Updated : 22 Mar, 2025

Try it on GfG Practice redirect icon

**Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. Then, you pick a card from the unsorted group and put it in the right place in the sorted group.

// C++ program for implementation of Insertion Sort #include using namespace std;

/* Function to sort array using insertion sort */ void insertionSort(int arr[], int n) { for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1;

    /* Move elements of arr[0..i-1], that are
       greater than key, to one position ahead
       of their current position */
    while (j >= 0 && arr[j] > key) {
        arr[j + 1] = arr[j];
        j = j - 1;
    }
    arr[j + 1] = key;
}

}

/* A utility function to print array of size n */ void printArray(int arr[], int n) { for (int i = 0; i < n; ++i) cout << arr[i] << " "; cout << endl; }

// Driver method int main() { int arr[] = { 12, 11, 13, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

return 0;

}

/* This code is contributed by Hritik Shah. */

C

// C program for implementation of Insertion Sort #include <stdio.h>

/* Function to sort array using insertion sort */ void insertionSort(int arr[], int n) { for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1;

    /* Move elements of arr[0..i-1], that are
       greater than key, to one position ahead
       of their current position */
    while (j >= 0 && arr[j] > key) {
        arr[j + 1] = arr[j];
        j = j - 1;
    }
    arr[j + 1] = key;
}

}

/* A utility function to print array of size n */ void printArray(int arr[], int n) { for (int i = 0; i < n; ++i) printf("%d ", arr[i]); printf("\n"); }

// Driver method int main() { int arr[] = { 12, 11, 13, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

return 0;

}

/* This code is contributed by Hritik Shah. */

Java

// Java program for implementation of Insertion Sort public class InsertionSort { /* Function to sort array using insertion sort */ void sort(int arr[]) { int n = arr.length; for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1;

        /* Move elements of arr[0..i-1], that are
           greater than key, to one position ahead
           of their current position */
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j = j - 1;
        }
        arr[j + 1] = key;
    }
}

/* A utility function to print array of size n */
static void printArray(int arr[])
{
    int n = arr.length;
    for (int i = 0; i < n; ++i)
        System.out.print(arr[i] + " ");

    System.out.println();
}

// Driver method
public static void main(String args[])
{
    int arr[] = { 12, 11, 13, 5, 6 };

    InsertionSort ob = new InsertionSort();
    ob.sort(arr);

    printArray(arr);
}

}

/* This code is contributed by Hritik Shah. */

Python

Python program for implementation of Insertion Sort

Function to sort array using insertion sort

def insertionSort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1

    # Move elements of arr[0..i-1], that are
    # greater than key, to one position ahead
    # of their current position
    while j >= 0 and key < arr[j]:
        arr[j + 1] = arr[j]
        j -= 1
    arr[j + 1] = key

A utility function to print array of size n

def printArray(arr): for i in range(len(arr)): print(arr[i], end=" ") print()

Driver method

if name == "main": arr = [12, 11, 13, 5, 6] insertionSort(arr) printArray(arr)

# This code is contributed by Hritik Shah.

C#

// C# program for implementation of Insertion Sort using System;

class InsertionSort { /* Function to sort array using insertion sort */ void sort(int[] arr) { int n = arr.Length; for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1;

        /* Move elements of arr[0..i-1], that are
           greater than key, to one position ahead
           of their current position */
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j = j - 1;
        }
        arr[j + 1] = key;
    }
}

/* A utility function to print array of size n */
static void printArray(int[] arr) {
    int n = arr.Length;
    for (int i = 0; i < n; ++i)
        Console.Write(arr[i] + " ");

    Console.WriteLine();
}

// Driver method
public static void Main() {
    int[] arr = { 12, 11, 13, 5, 6 };

    InsertionSort ob = new InsertionSort();
    ob.sort(arr);

    printArray(arr);
}

}

/* This code is contributed by Hritik Shah. */

JavaScript

// Javascript program for insertion sort

// Function to sort array using insertion sort function insertionSort(arr) { for (let i = 1; i < arr.length; i++) { let key = arr[i]; let j = i - 1;

    /* Move elements of arr[0..i-1], that are
       greater than key, to one position ahead
       of their current position */
    while (j >= 0 && arr[j] > key) {
        arr[j + 1] = arr[j];
        j = j - 1;
    }
    arr[j + 1] = key;
}

}

// A utility function to print array of size n function printArray(arr) { console.log(arr.join(" ")); }

// Driver method let arr = [12, 11, 13, 5, 6];

insertionSort(arr); printArray(arr);

// This code is contributed by Hritik Shah.

PHP

i<i < i<n; $i++) { key=key = key=arr[$i]; j=j = j=i - 1; // Move elements of arr[0..i-1], // that are greater than key, to // one position ahead of their // current position while ($j >= 0 && arr[arr[arr[j] > $key) { arr[arr[arr[j + 1] = arr[arr[arr[j]; j=j = j=j - 1; } arr[arr[arr[j + 1] = $key; } } // A utility function to print an array of size n function printArray(&$arr, $n) { for ($i = 0; i<i < i<n; $i++) echo arr[arr[arr[i] . " "; echo "\n"; } // Driver Code $arr = array(12, 11, 13, 5, 6); n=sizeof(n = sizeof(n=sizeof(arr); insertionSort($arr, $n); printArray($arr, $n); // This code is contributed by Hritik Shah. ?>

`

**Illustration

Insertion-sorting

**arr = {23, 1, 10, 5, 2}

**Initial:

First Pass:

Second Pass:

Third Pass:

Fourth Pass:

Final Array:

Complexity Analysis of Insertion Sort

Time Complexity

Space Complexity

Please refer Complexity Analysis of Insertion Sort for details.

**Advantages and Disadvantages of Insertion Sort

**Advantages

Disadvantages

Applications **of Insertion Sort

Insertion sort is commonly used in situations where:

**What are the Boundary Cases of the Insertion Sort algorithm?

Insertion sort takes the maximum time to sort if elements are sorted in reverse order. And it takes minimum time (Order of n) when elements are already sorted.

**What is the Algorithmic Paradigm of the Insertion Sort algorithm?

The Insertion Sort algorithm follows an incremental approach.

**Is Insertion Sort an in-place sorting algorithm?

Yes, insertion sort is an in-place sorting algorithm.

Is Insertion Sort a stable algorithm?

Yes, insertion sort is a stable sorting algorithm.

**When is the Insertion Sort algorithm used?

Insertion sort is used when number of elements is small. It can also be useful when the input array is almost sorted, and only a few elements are misplaced in a complete big array.