Introduction to Segment Trees Data Structure and Algorithm Tutorials (original) (raw)

A Segment Tree is used to stores information about array intervals in its nodes.

Types of Operations:

Segment Trees are mainly used for range queries on a fixed sized array. The values of array elements can be changed. The type of range queries that a segment tree can perform must have the property that to answer query from L to R, we can use the answers from L to M and M + 1 to R where M is a point between L to R, i.e., L <= M <= R.

The following are few example queries over a range in an array.

Structure of the Tree

The segment tree works on the principle of divide and conquer.

The segment tree is generally represented using an array where the first value stores the value for the total array range and the child of the node at the **i th index are at ****(2*i + 1)** and ****(2*i + 2)**.

Constructing the segment tree:

There are two important points to be noted while constructing the segment tree:

If the problem definition states that we need to calculate the sum over ranges, then the value at nodes should store the sum of values over the ranges.

Following are the steps for constructing a segment tree:

  1. Start from the leaves of the tree
  2. Recursively build the parents from the merge operation

The merge operation will take constant time if the operator takes constant time. SO building the whole tree takes **O(N) time.

Segment tree

Range Query

Let us understand this with the help of the following problem

Given two integers L and R return the sum of the segment [L, R]

The first step is constructing the segment tree with the addition operator and 0 as the neutral element.

As the height of the segment tree is **logN the query time will be **O(logN) per query.

Range Query in Segment Tree

Range Query in Segment Tree

Point Updates

Given an index, **idx, update the value of the array at index **idx with value **V

The element's contribution is only in the path from its leaf to its parent. Thus only **logN elements will get affected due to the update.

For updating, traverse till the leaf that stores the value of index **idx and update the value. Then while tracing back in the path, modify the ranges accordingly.

The time complexity will be **O(logN).

Point Update in Segment Tree

Point Update in Segment Tree

Below is the implementation of **construction, **query, and **point update for a segment tree:

C++ `

// C++ code for segment tree with sum // range and update query

#include <bits/stdc++.h> using namespace std; vector A, ST;

void build(int node, int L, int R) {

// Leaf node where L == R
if (L == R) {
    ST[node] = A[L];
}
else {

    // Find the middle element to
    // split the array into two halves
    int mid = (L + R) / 2;

    // Recursively travel the
    // left half
    build(2 * node, L, mid);

    // Recursively travel the
    // right half
    build(2 * node + 1, mid + 1, R);

    // Storing the sum of both the
    // children into the parent
    ST[node] = ST[2 * node] + ST[2 * node + 1];
}

}

void update(int node, int L, int R, int idx, int val) {

// Find the lead node and
// update its value
if (L == R) {
    A[idx] += val;
    ST[node] += val;
}
else {

    // Find the mid
    int mid = (L + R) / 2;

    // If node value idx is at the
    // left part then update
    // the left part
    if (L <= idx and idx <= mid)
        update(2 * node, L, mid, idx, val);
    else
        update(2 * node + 1, mid + 1, R, idx, val);

    // Store the information in parents
    ST[node] = ST[2 * node] + ST[2 * node + 1];
}

}

int query(int node, int tl, int tr, int l, int r) {

// If it lies out of range then
// return 0
if (r < tl or tr < l)
    return 0;

// If the node contains the range then
// return the node value
if (l <= tl and tr <= r)
    return ST[node];
int tm = (tl + tr) / 2;

// Recursively traverse left and right
// and find the node
return query(2 * node, tl, tm, l, r)
       + query(2 * node + 1, tm + 1, tr, l, r);

}

// Driver code int main() { int n = 6; A = { 0, 1, 3, 5, -2, 3 };

// Create a segment tree of size 4*n
ST.resize(4 * n);

// Build a segment tree
build(1, 0, n - 1);
cout << "Sum of values in range 0-4 are: "
     << query(1, 0, n - 1, 0, 4) << "\n";

// Update the value at idx = 1 by
// 100 thus becoming 101
update(1, 0, n - 1, 1, 100);
cout << "Value at index 1 increased by 100\n";
cout << "sum of value in range 1-3 are: "
     << query(1, 0, n - 1, 1, 3) << "\n";

return 0;

}

Java

// Java code for segment tree with sum // range and update query import java.io.; import java.util.;

class GFG { static int n = 6; static int A[] = { 0, 1, 3, 5, -2, 3 };

// Create a segment tree of size 4*n
static int ST[] = new int[4 * n];
public static void build(int node, int L, int R)
{

    // Leaf node where L == R
    if (L == R) {
        ST[node] = A[L];
    }
    else {

        // Find the middle element to
        // split the array into two halves
        int mid = (L + R) / 2;

        // Recursively travel the
        // left half
        build(2 * node, L, mid);

        // Recursively travel the
        // right half
        build(2 * node + 1, mid + 1, R);

        // Storing the sum of both the
        // children into the parent
        ST[node] = ST[2 * node] + ST[2 * node + 1];
    }
}

public static void update(int node, int L, int R,
                          int idx, int val)
{

    // Find the lead node and
    // update its value
    if (L == R) {
        A[idx] += val;
        ST[node] += val;
    }
    else {

        // Find the mid
        int mid = (L + R) / 2;

        // If node value idx is at the
        // left part then update
        // the left part
        if (L <= idx && idx <= mid)
            update(2 * node, L, mid, idx, val);
        else
            update(2 * node + 1, mid + 1, R, idx, val);

        // Store the information in parents
        ST[node] = ST[2 * node] + ST[2 * node + 1];
    }
}

public static int query(int node, int tl, int tr, int l,
                        int r)
{

    // If it lies out of range then
    // return 0
    if (r < tl || tr < l)
        return 0;

    // If the node contains the range then
    // return the node value
    if (l <= tl && tr <= r)
        return ST[node];
    int tm = (tl + tr) / 2;

    // Recursively traverse left and right
    // and find the node
    return query(2 * node, tl, tm, l, r)
        + query(2 * node + 1, tm + 1, tr, l, r);
}

// Driver Code
public static void main(String[] args)
{
    // Build a segment tree
    build(1, 0, n - 1);
    System.out.println(
        "Sum of values in range 0-4 are: "
        + query(1, 0, n - 1, 0, 4));

    // Update the value at idx = 1 by
    // 100 ths becoming 101
    update(1, 0, n - 1, 1, 100);
    System.out.println(
        "Value at index 1 increased by 100");
    System.out.println("sum of value in range 1-3 are: "
                       + query(1, 0, n - 1, 1, 3));
}

}

// This code is contributed by Rohit Pradhan

Python

python3 code for segment tree with sum

range and update query

A = [] ST = []

def build(node, L, R): global A, ST

# Leaf node where L == R
if (L == R):
    ST[node] = A[L]

else:

    # Find the middle element to
    # split the array into two halves
    mid = (L + R) // 2

    # Recursively travel the
    # left half
    build(2 * node, L, mid)

    # Recursively travel the
    # right half
    build(2 * node + 1, mid + 1, R)

    # Storing the sum of both the
    # children into the parent
    ST[node] = ST[2 * node] + ST[2 * node + 1]

def update(node, L, R, idx, val): global A, ST

# Find the lead node and
# update its value
if (L == R):
    A[idx] += val
    ST[node] += val

else:

    # Find the mid
    mid = (L + R) // 2

    # If node value idx is at the
    # left part then update
    # the left part
    if (L <= idx and idx <= mid):
        update(2 * node, L, mid, idx, val)
    else:
        update(2 * node + 1, mid + 1, R, idx, val)

    # Store the information in parents
    ST[node] = ST[2 * node] + ST[2 * node + 1]

def query(node, tl, tr, l, r): global A, ST

# If it lies out of range then
# return 0
if (r < tl or tr < l):
    return 0

# If the node contains the range then
# return the node value
if (l <= tl and tr <= r):
    return ST[node]
tm = (tl + tr) // 2

# Recursively traverse left and right
# and find the node
return query(2 * node, tl, tm, l, r) + query(2 * node + 1, tm + 1, tr, l, r)

Driver code

if name == "main":

n = 6
A = [0, 1, 3, 5, -2, 3]

# Create a segment tree of size 4*n
ST = [0 for _ in range(4 * n)]

# Build a segment tree
build(1, 0, n - 1)
print(f"Sum of values in range 0-4 are: {query(1, 0, n - 1, 0, 4)}")

# Update the value at idx = 1 by
# 100 ths becoming 101
update(1, 0, n - 1, 1, 100)
print("Value at index 1 increased by 100")
print(f"sum of value in range 1-3 are: {query(1, 0, n - 1, 1, 3)}")

# This code is contributed by rakeshsahni

C#

// C# code for segment tree with sum // range and update query

using System;

public class GFG {

static int n = 6;
static int[] A = { 0, 1, 3, 5, -2, 3 };

// Create a segment tree of size 4*n
static int[] ST = new int[4 * n];

public static void build(int node, int L, int R)
{

    // Leaf node where L == R
    if (L == R) {
        ST[node] = A[L];
    }
    else {

        // Find the middle element to
        // split the array into two halves
        int mid = (L + R) / 2;

        // Recursively travel the
        // left half
        build(2 * node, L, mid);

        // Recursively travel the
        // right half
        build(2 * node + 1, mid + 1, R);

        // Storing the sum of both the
        // children into the parent
        ST[node] = ST[2 * node] + ST[2 * node + 1];
    }
}

public static void update(int node, int L, int R,
                          int idx, int val)
{

    // Find the lead node and
    // update its value
    if (L == R) {
        A[idx] += val;
        ST[node] += val;
    }
    else {

        // Find the mid
        int mid = (L + R) / 2;

        // If node value idx is at the
        // left part then update
        // the left part
        if (L <= idx && idx <= mid)
            update(2 * node, L, mid, idx, val);
        else
            update(2 * node + 1, mid + 1, R, idx, val);

        // Store the information in parents
        ST[node] = ST[2 * node] + ST[2 * node + 1];
    }
}

public static int query(int node, int tl, int tr, int l,
                        int r)
{

    // If it lies out of range then
    // return 0
    if (r < tl || tr < l)
        return 0;

    // If the node contains the range then
    // return the node value
    if (l <= tl && tr <= r)
        return ST[node];
    int tm = (tl + tr) / 2;

    // Recursively traverse left and right
    // and find the node
    return query(2 * node, tl, tm, l, r)
        + query(2 * node + 1, tm + 1, tr, l, r);
}

static public void Main()
{

    // Code
    // Build a segment tree
    build(1, 0, n - 1);
    Console.WriteLine("Sum of values in range 0-4 are: "
                      + query(1, 0, n - 1, 0, 4));

    // Update the value at idx = 1 by
    // 100 ths becoming 101
    update(1, 0, n - 1, 1, 100);
    Console.WriteLine(
        "Value at index 1 increased by 100");
    Console.WriteLine("sum of value in range 1-3 are: "
                      + query(1, 0, n - 1, 1, 3));
}

}

// This code is contributed by lokeshmvs21.

` JavaScript ``

// JavaScript code for the above approach function build(node, L, R) {

        // Leaf node where L == R
        if (L === R) {
            ST[node] = A[L];
        } else {
            // Find the middle element to split the array into two halves
            const mid = Math.floor((L + R) / 2);

            // Recursively travel the left half
            build(2 * node, L, mid);

            // Recursively travel the right half
            build(2 * node + 1, mid + 1, R);

            // Storing the sum of both the children into the parent
            ST[node] = ST[2 * node] + ST[2 * node + 1];
        }
    }

    function update(node, L, R, idx, val)
    {
    
        // Find the lead node and update its value
        if (L === R) {
            A[idx] += val;
            ST[node] += val;
        } else {
            // Find the mid
            const mid = Math.floor((L + R) / 2);

            // If node value idx is at the left part then update the left part
            if (L <= idx && idx <= mid) {
                update(2 * node, L, mid, idx, val);
            } else {
                update(2 * node + 1, mid + 1, R, idx, val);
            }

            // Store the information in parents
            ST[node] = ST[2 * node] + ST[2 * node + 1];
        }
    }

    function query(node, tl, tr, l, r) {
        // If it lies out of range then return 0
        if (r < tl || tr < l) return 0;

        // If the node contains the range then return the node value
        if (l <= tl && tr <= r) return ST[node];
        const tm = Math.floor((tl + tr) / 2);

        // Recursively traverse left and right and find the node
        return query(2 * node, tl, tm, l, r) + query(2 * node + 1, tm + 1, tr, l, r);
    }

    // Driver Code
    const A = [0, 1, 3, 5, -2, 3];
    const ST = new Array(4 * A.length);
    // Build a segment tree
    build(1, 0, A.length - 1);
    console.log(`Sum of values in range 0-4 are: ${query(1, 0, A.length - 1, 0, 4)}<br>`);

    // Update the value at idx = 1 by 100 thus becoming 101
    update(1, 0, A.length - 1, 1, 100);
    console.log(`Value at index 1 increased by 100 <br>`);
    console.log(`sum of value in range 1-3 are: ${query(1, 0, A.length - 1, 1, 3)}<br>`);

// This code is contributed by Potta Lokesh

``

Output

Sum of values in range 0-4 are: 7 Value at index 1 increased by 100 sum of value in range 1-3 are: 109

**Time complexity: O(N)

**Auxiliary Space: O(n)

**Note:

A segment tree with 2^x leaf nodes will have 2^(x+1)-1 total nodes due to its perfect binary tree structure. However, when dealing with a non-power-of-two number of elements, extra leaf nodes may be present. To represent all elements, the number of leaf nodes must be rounded up to the nearest power of two, resulting in a maximum of almost 2*n leaf nodes.

For instance, if n is 2^j + 1, 2^(j+1) leaf nodes will be required, leading to an O(2*n) space complexity. As the total number of nodes is about twice the number of leaf nodes, the total space complexity of the segment tree is O(4n). The space requirement can be substantial, but it is usually manageable for most practical applications.

Updating an interval (Lazy propagation):

**Lazy Propagation: A speedup technique for range updates

Example of segment tree

Example of segment tree

Below is the implementation to demonstrate the working of Lazy Propagation.

C++ `

// Program to show segment tree to // demonstrate lazy propagation #include <bits/stdc++.h> using namespace std; #define MAX 1000

// Ideally, we should not use global // variables and large constant-sized // arrays, we have done it here for // simplicity.

// To store segment tree int tree[MAX] = { 0 };

// To store pending updates int lazy[MAX] = { 0 };

// si -> index of current node in segment tree // ss and se -> Starting and ending // indices of elements for which current // nodes stores sum. // us and ue -> starting and ending indexes // of update query // diff -> which we need to add in the // range us to ue void updateRangeUtil(int si, int ss, int se, int us, int ue, int diff) { // If lazy value is non-zero for // current node of segment tree, then // there are some pending updates. So, // we need to make sure that the // pending updates are done before // making new updates. Because this // value may be used by parent after // recursive calls (See last line // of this function) if (lazy[si] != 0) {

    // Make pending updates using
    // value stored in lazy nodes
    tree[si] += (se - ss + 1) * lazy[si];

    // checking if it is not leaf node
    // because if it is leaf node then
    // we cannot go further
    if (ss != se) {

        // We can postpone updating
        // children we don't need
        // their new values now. Since
        // we are not yet updating
        // children of si, we need to
        // set lazy flags for the children
        lazy[si * 2 + 1] += lazy[si];
        lazy[si * 2 + 2] += lazy[si];
    }

    // Set the lazy value for current
    // node as 0 as it has been updated
    lazy[si] = 0;
}

// out of range
if (ss > se || ss > ue || se < us)
    return;

// Current segment is fully in range
if (ss >= us && se <= ue) {

    // Add the difference to
    // current node
    tree[si] += (se - ss + 1) * diff;

    // Same logic for checking
    // leaf node or not
    if (ss != se) {

        // This is where we store
        // values in lazy nodes,
        // rather than updating the
        // segment tree itself Since
        // we don't need these updated
        // values now we postpone
        // updates by storing values
        // in lazy[]
        lazy[si * 2 + 1] += diff;
        lazy[si * 2 + 2] += diff;
    }
    return;
}

// If not completely in rang,
// but overlaps, recur for children,
int mid = (ss + se) / 2;
updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff);

// And use the result of children
// calls to update this node
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];

}

// Function to update a range of values // in segment tree // us and eu -> starting and ending // indices of update query // ue -> ending index of update query // diff -> which we need to add in the // range us to ue void updateRange(int n, int us, int ue, int diff) { updateRangeUtil(0, 0, n - 1, us, ue, diff); }

// A recursive function to get the sum of // values in given range of the array. // The following are parameters for this function. // si --> Index of current node in the st. // Initially 0 is passed as root is always // at' index 0 // ss & se --> Starting and ending indices // of the segment represented by current // node, i.e., tree[si] // qs & qe --> Starting and ending // indices of query range int getSumUtil(int ss, int se, int qs, int qe, int si) {

// If lazy flag is set for current
// node of segment tree, then there
// are some pending updates. So we
// need to make sure that the pending
// updates are done before
// processing the sub sum query
if (lazy[si] != 0) {

    // Make pending updates to this
    // node. Note that this node
    // represents sum of elements in
    // arr[ss..se]  and all these
    // elements must be increased by
    // lazy[si]
    tree[si] += (se - ss + 1) * lazy[si];

    // Checking if it is not leaf node
    // because if it is leaf node then
    // we cannot go further
    if (ss != se) {

        // Since we are not yet
        // updating children os si,
        // we need to set lazy values
        // for the children
        lazy[si * 2 + 1] += lazy[si];
        lazy[si * 2 + 2] += lazy[si];
    }

    // unset the lazy value for current
    // node as it has been updated
    lazy[si] = 0;
}

// Out of range
if (ss > se || ss > qe || se < qs)
    return 0;

// At this point we are sure that
// pending lazy updates are done for
// current node. So we can return
// value

// If this segment lies in range
if (ss >= qs && se <= qe)
    return tree[si];

// If a part of this segment overlaps
// with the given range
int mid = (ss + se) / 2;
return getSumUtil(ss, mid, qs, qe, 2 * si + 1)
       + getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);

}

// Return sum of elements in range from // index qs (query start) to qe (query end). // It mainly uses getSumUtil() int getSum(int n, int qs, int qe) {

// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
    cout << "Invalid Input";
    return -1;
}

return getSumUtil(0, n - 1, qs, qe, 0);

}

// A recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node in st. void constructSTUtil(int arr[], int ss, int se, int si) {

// Out of range as ss can never
// be greater than se
if (ss > se)
    return;

// If there is one element in array,
// store it in current node of segment
// tree and return
if (ss == se) {
    tree[si] = arr[ss];
    return;
}

// If there are more than one elements,
// then recur for left and right
// subtrees and store the sum of
// values in this node
int mid = (ss + se) / 2;
constructSTUtil(arr, ss, mid, si * 2 + 1);
constructSTUtil(arr, mid + 1, se, si * 2 + 2);

tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];

}

// Function to construct segment tree // from given array.This function allocates // memory for segment tree and calls // constructSTUtil() to fill the // allocated memory void constructST(int arr[], int n) {

// Fill the allocated memory st
constructSTUtil(arr, 0, n - 1, 0);

}

// Driver program to test above functions int main() { int arr[] = { 1, 3, 5, 7, 9, 11 }; int n = sizeof(arr) / sizeof(arr[0]);

// Build segment tree from given array
constructST(arr, n);

// Print sum of values in array
// from index 1 to 3
cout << "Sum of values in given range = " << getSum(n, 1, 3) << endl;

// Add 10 to all nodes at indexes
// from 1 to 5.
updateRange(n, 1, 5, 10);

// Find sum after the value is updated
cout << "Updated sum of values in given range = " << getSum(n, 1, 3) << endl;

return 0;

}

Java

// Java program to show segment tree to // demonstrate lazy propagation import java.util.*;

class GFG {

// Ideally, we should not use global
// variables and large constant-sized
// arrays, we have done it here for
// simplicity.

static final int MAX = 1000;

// To store segment tree
static int[] tree = new int[MAX];

// To store pending updates
static int[] lazy = new int[MAX];

// si -> index of current node in segment tree
// ss and se -> Starting and ending
// indices of elements for which current
// nodes stores sum.
// us and ue -> starting and ending indexes
// of update query
// diff -> which we need to add in the
// range us to ue
static void updateRangeUtil(int si, int ss, int se,
                            int us, int ue, int diff)
{

    // If lazy value is non-zero for
    // current node of segment tree, then
    // there are some pending updates. So,
    // we need to make sure that the
    // pending updates are done before
    // making new updates. Because this
    // value may be used by parent after
    // recursive calls (See last line
    // of this function)
    if (lazy[si] != 0) {

        // Make pending updates using
        // value stored in lazy nodes
        tree[si] += (se - ss + 1) * lazy[si];

        // checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (ss != se) {

            // We can postpone updating
            // children we don't need
            // their new values now. Since
            // we are not yet updating
            // children of si, we need to
            // set lazy flags for the children
            lazy[si * 2 + 1] += lazy[si];
            lazy[si * 2 + 2] += lazy[si];
        }

        // Set the lazy value for current
        // node as 0 as it has been updated
        lazy[si] = 0;
    }

    // out of range
    if (ss > se || ss > ue || se < us) {
        return;
    }

    // Current segment is fully in range
    if (ss >= us && se <= ue) {

        // Add the difference to
        // current node
        tree[si] += (se - ss + 1) * diff;

        // Same logic for checking
        // leaf node or not
        if (ss != se) {

            // This is where we store
            // values in lazy nodes,
            // rather than updating the
            // segment tree itself Since
            // we don't need these updated
            // values now we postpone
            // updates by storing values
            // in lazy[]
            lazy[si * 2 + 1] += diff;
            lazy[si * 2 + 2] += diff;
        }
        return;
    }

    // If not completely in rang,
    // but overlaps, recur for children,
    int mid = (ss + se) / 2;
    updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
    updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue,
                    diff);

    // And use the result of children
    // calls to update this node
    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}

// Function to update a range of values
// in segment tree
// us and eu -> starting and ending
// indices of update query
// ue -> ending index of update query
// diff -> which we need to add in the
// range us to ue
static void updateRange(int n, int us, int ue, int diff)
{
    updateRangeUtil(0, 0, n - 1, us, ue, diff);
}

// A recursive function to get the sum of
// values in given range of the array.
// The following are parameters for this function.
// si --> Index of current node in the st.
// Initially 0 is passed as root is always
// at' index 0
// ss & se --> Starting and ending indices
// of the segment represented by current
// node, i.e., tree[si]
// qs & qe --> Starting and ending
// indices of query range
static int getSumUtil(int ss, int se, int qs, int qe,
                      int si)
{

    // If lazy flag is set for current
    // node of segment tree, then there
    // are some pending updates. So we
    // need to make sure that the pending
    // updates are done before
    // processing the sub sum query
    if (lazy[si] != 0) {

        // Make pending updates to this
        // node. Note that this node
        // represents sum of elements in
        // arr[ss..se]  and all these
        // elements must be increased by
        // lazy[si]
        tree[si] += (se - ss + 1) * lazy[si];

        // Checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (ss != se) {

            // Since we are not yet
            // updating children os si,
            // we need to set lazy values
            // for the children
            lazy[si * 2 + 1] += lazy[si];
            lazy[si * 2 + 2] += lazy[si];
        }

        // unset the lazy value for current
        // node as it has been updated
        lazy[si] = 0;
    }

    // Out of range
    if (ss > se || ss > qe || se < qs) {
        return 0;
    }

    // At this point we are sure that
    // pending lazy updates are done for
    // current node. So we can return
    // value

    // If this segment lies in range
    if (ss >= qs && se <= qe) {
        return tree[si];
    }

    // If a part of this segment overlaps
    // with the given range
    int mid = (ss + se) / 2;
    return getSumUtil(ss, mid, qs, qe, 2 * si + 1)
        + getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}

// Return sum of elements in range from
// index qs (query start) to qe (query end).
// It mainly uses getSumUtil()
static int getSum(int n, int qs, int qe)
{

    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe) {
        System.out.println("Invalid Input");
        return -1;
    }
    return getSumUtil(0, n - 1, qs, qe, 0);
}

// A recursive function that constructs
// Segment Tree for array[ss..se].
// si is index of current node in st.
static void constructSTUtil(int arr[], int ss, int se,
                            int si)
{

    // Out of range as ss can never
    // be greater than se
    if (ss > se)
        return;

    // If there is one element in array,
    // store it in current node of segment
    // tree and return
    if (ss == se) {
        tree[si] = arr[ss];
        return;
    }

    // If there are more than one elements,
    // then recur for left and right
    // subtrees and store the sum of
    // values in this node
    int mid = (ss + se) / 2;
    constructSTUtil(arr, ss, mid, si * 2 + 1);
    constructSTUtil(arr, mid + 1, se, si * 2 + 2);

    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}

// Function to construct segment tree
// from given array.This function allocates
// memory for segment tree and calls
// constructSTUtil() to fill the
// allocated memory
static void constructST(int arr[], int n)
{

    // Fill the allocated memory st
    constructSTUtil(arr, 0, n - 1, 0);
}

// Driver program to test above functions
public static void main(String[] args)
{
    int arr[] = { 1, 3, 5, 7, 9, 11 };
    int n = arr.length;

    // Build segment tree from given array
    constructST(arr, n);

    // Print sum of values in array
    // from index 1 to 3
    System.out.println("Sum of values in given range = "
                       + getSum(n, 1, 3));

    // Add 10 to all nodes at indexes
    // from 1 to 5.
    updateRange(n, 1, 5, 10);

    // Find sum after the value is updated
    System.out.println(
        "Updated sum of values in given range = "
        + getSum(n, 1, 3));
}

} // This code is contributed by Prasad Kandekar(prasad264)

Python

Program to show segment tree to

demonstrate lazy propagation

MAX = 1000

Ideally, we should not use global

variables and large constant-sized

arrays, we have done it here for

simplicity.

To store segment tree

tree = [0] * MAX

To store pending updates

lazy = [0] * MAX

si -> index of current node in segment tree

ss and se -> Starting and ending

indices of elements for which current

nodes stores sum.

us and ue -> starting and ending indexes

of update query

diff -> which we need to add in the

range us to ue

def updateRangeUtil(si, ss, se, us, ue, diff):

# If lazy value is non-zero for
# current node of segment tree, then
# there are some pending updates. So,
# we need to make sure that the
# pending updates are done before
# making new updates. Because this
# value may be used by parent after
# recursive calls (See last line
# of this function)
if lazy[si] != 0:

    # Make pending updates using
    # value stored in lazy nodes
    tree[si] += (se - ss + 1) * lazy[si]

    # checking if it is not leaf node
    # because if it is leaf node then
    # we cannot go further
    if ss != se:

                    # We can postpone updating
        # children we don't need
        # their new values now. Since
        # we are not yet updating
        # children of si, we need to
        # set lazy flags for the children
        lazy[si * 2 + 1] += lazy[si]
        lazy[si * 2 + 2] += lazy[si]

    # Set the lazy value for current
    # node as 0 as it has been updated
    lazy[si] = 0

# out of range
if ss > se or ss > ue or se < us:
    return

# Current segment is fully in range
if ss >= us and se <= ue:

    # Add the difference to
    # current node
    tree[si] += (se - ss + 1) * diff

    # Same logic for checking
    # leaf node or not
    if ss != se:

        # This is where we store
        # values in lazy nodes,
        # rather than updating the
        # segment tree itself Since
        # we don't need these updated
        # values now we postpone
        # updates by storing values
        # in lazy[]
        lazy[si * 2 + 1] += diff
        lazy[si * 2 + 2] += diff
    return

# If not completely in rang,
# but overlaps, recur for children,
mid = (ss + se) // 2
updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff)
updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff)

# And use the result of children
# calls to update this node
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]

Function to update a range of values

in segment tree

us and eu -> starting and ending

indices of update query

ue -> ending index of update query

diff -> which we need to add in the

range us to ue

def updateRange(n, us, ue, diff): updateRangeUtil(0, 0, n - 1, us, ue, diff)

A recursive function to get the sum of

values in given range of the array.

The following are parameters for this function.

si --> Index of current node in the st.

Initially 0 is passed as root is always

at' index 0

ss & se --> Starting and ending indices

of the segment represented by current

node, i.e., tree[si]

qs & qe --> Starting and ending

indices of query range

def getSumUtil(ss, se, qs, qe, si):

# If lazy flag is set for current
# node of segment tree, then there
# are some pending updates. So we
# need to make sure that the pending
# updates are done before
# processing the sub sum query
if lazy[si] != 0:

    # Make pending updates to this
    # node. Note that this node
    # represents sum of elements in
    # arr[ss..se]  and all these
    # elements must be increased by
    # lazy[si]
    tree[si] += (se - ss + 1) * lazy[si]

    # Checking if it is not leaf node
    # because if it is leaf node then
    # we cannot go further
    if ss != se:

        # Since we are not yet
        # updating children os si,
        # we need to set lazy values
        # for the children
        lazy[si * 2 + 1] += lazy[si]
        lazy[si * 2 + 2] += lazy[si]

    # unset the lazy value for current
    # node as it has been updated
    lazy[si] = 0

# Out of range
if ss > se or ss > qe or se < qs:
    return 0

# At this point we are sure that
# pending lazy updates are done for
# current node. So we can return
# value

# If this segment lies in range
if ss >= qs and se <= qe:
    return tree[si]

# If a part of this segment overlaps
# with the given range
mid = (ss + se) // 2
return (getSumUtil(ss, mid, qs, qe, 2 * si + 1)
        + getSumUtil(mid + 1, se, qs, qe, 2 * si + 2))

Return sum of elements in range from

index qs (query start) to qe (query end).

It mainly uses getSumUtil()

def getSum(n, qs, qe):

# Check for erroneous input values
if qs < 0 or qe > n - 1 or qs > qe:
    print("Invalid Input")
    return -1
return getSumUtil(0, n - 1, qs, qe, 0)

A recursive function that constructs

Segment Tree for array[ss..se].

si is index of current node in st.

def constructSTUtil(arr, ss, se, si):

# Out of range as ss can never
# be greater than se
if ss > se:
    return

# If there is one element in array,
# store it in current node of segment
# tree and return
if ss == se:
    tree[si] = arr[ss]
    return

    # If there are more than one elements,
# then recur for left and right
# subtrees and store the sum of
# values in this node
mid = (ss + se) // 2
constructSTUtil(arr, ss, mid, si * 2 + 1)
constructSTUtil(arr, mid + 1, se, si * 2 + 2)
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]

Function to construct segment tree

from given array.This function allocates

memory for segment tree and calls

constructSTUtil() to fill the

allocated memory

def constructST(arr, n): # Fill the allocated memory st constructSTUtil(arr, 0, n - 1, 0)

Driver program to test above functions

arr = [1, 3, 5, 7, 9, 11] n = len(arr)

Build segment tree from given array

constructST(arr, n)

Print sum of values in array

from index 1 to 3

print(f"Sum of values in given range = {getSum(n, 1, 3)}")

Add 10 to all nodes at indexes

from 1 to 5.

updateRange(n, 1, 5, 10)

Find sum after the value is updated

print(f"Updated sum of values in given range = {getSum(n, 1, 3)}")

C#

// Program to show segment tree to // demonstrate lazy propagation using System;

public class GFG { const int MAX = 1000;

// Ideally, we should not use global
// variables and large constant-sized
// arrays, we have done it here for
// simplicity.

// To store segment tree
static int[] tree = new int[MAX];

// To store pending updates
static int[] lazy = new int[MAX];

// si -> index of current node in segment tree
// ss and se -> Starting and ending
// indices of elements for which current
// nodes stores sum.
// us and ue -> starting and ending indexes
// of update query
// diff -> which we need to add in the
// range us to ue
static void UpdateRangeUtil(int si, int ss, int se,
                            int us, int ue, int diff)
{

    // If lazy value is non-zero for
    // current node of segment tree, then
    // there are some pending updates. So,
    // we need to make sure that the
    // pending updates are done before
    // making new updates. Because this
    // value may be used by parent after
    // recursive calls (See last line
    // of this function)
    if (lazy[si] != 0) {

        // Make pending updates using
        // value stored in lazy nodes
        tree[si] += (se - ss + 1) * lazy[si];

        // checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (ss != se) {

            // We can postpone updating
            // children we don't need
            // their new values now. Since
            // we are not yet updating
            // children of si, we need to
            // set lazy flags for the children
            lazy[si * 2 + 1] += lazy[si];
            lazy[si * 2 + 2] += lazy[si];
        }

        // Set the lazy value for current
        // node as 0 as it has been updated
        lazy[si] = 0;
    }

    // out of range
    if (ss > se || ss > ue || se < us)
        return;

    // Current segment is fully in range
    if (ss >= us && se <= ue) {

        // Add the difference to
        // current node
        tree[si] += (se - ss + 1) * diff;

        // Same logic for checking
        // leaf node or not
        if (ss != se) {

            // This is where we store
            // values in lazy nodes,
            // rather than updating the
            // segment tree itself Since
            // we don't need these updated
            // values now we postpone
            // updates by storing values
            // in lazy[]
            lazy[si * 2 + 1] += diff;
            lazy[si * 2 + 2] += diff;
        }
        return;
    }

    // If not completely in rang,
    // but overlaps, recur for children,
    int mid = (ss + se) / 2;
    UpdateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
    UpdateRangeUtil(si * 2 + 2, mid + 1, se, us, ue,
                    diff);

    // And use the result of children
    // calls to update this node
    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}

// Function to update a range of values
// in segment tree
// us and eu -> starting and ending
// indices of update query
// ue -> ending index of update query
// diff -> which we need to add in the
// range us to ue
static void UpdateRange(int n, int us, int ue, int diff)
{
    UpdateRangeUtil(0, 0, n - 1, us, ue, diff);
}

// A recursive function to get the sum of
// values in given range of the array.
// The following are parameters for this function.
// si --> Index of current node in the st.
// Initially 0 is passed as root is always
// at' index 0
// ss & se --> Starting and ending indices
// of the segment represented by current
// node, i.e., tree[si]
// qs & qe --> Starting and ending
// indices of query range
static int GetSumUtil(int ss, int se, int qs, int qe,
                      int si)
{

    // If lazy flag is set for current
    // node of segment tree, then there
    // are some pending updates. So we
    // need to make sure that the pending
    // updates are done before
    // processing the sub sum query
    if (lazy[si] != 0) {

        // Make pending updates to this
        // node. Note that this node
        // represents sum of elements in
        // arr[ss..se]  and all these
        // elements must be increased by
        // lazy[si]
        tree[si] += (se - ss + 1) * lazy[si];

        // Checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (ss != se) {

            // Since we are not yet
            // updating children os si,
            // we need to set lazy values
            // for the children
            lazy[si * 2 + 1] += lazy[si];
            lazy[si * 2 + 2] += lazy[si];
        }

        // unset the lazy value for current
        // node as it has been updated
        lazy[si] = 0;
    }

    // Out of range
    if (ss > se || ss > qe || se < qs)
        return 0;

    // At this point we are sure that
    // pending lazy updates are done for
    // current node. So we can return
    // value

    // If this segment lies in range
    if (ss >= qs && se <= qe)
        return tree[si];

    // If a part of this segment overlaps
    // with the given range
    int mid = (ss + se) / 2;
    return GetSumUtil(ss, mid, qs, qe, 2 * si + 1)
        + GetSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}

// Return sum of elements in range from
// index qs (query start) to qe (query end).
// It mainly uses getSumUtil()
static int GetSum(int n, int qs, int qe)
{

    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe) {
        Console.WriteLine("Invalid Input");
        return -1;
    }
    return GetSumUtil(0, n - 1, qs, qe, 0);
}

// A recursive function that constructs
// Segment Tree for array[ss..se].
// si is index of current node in st.
static void ConstructSTUtil(int[] arr, int ss, int se,
                            int si)
{

    // Out of range as ss can never
    // be greater than se
    if (ss > se)
        return;

    // If there is one element in array,
    // store it in current node of segment
    // tree and return
    if (ss == se) {
        tree[si] = arr[ss];
        return;
    }

    // If there are more than one elements,
    // then recur for left and right
    // subtrees and store the sum of
    // values in this node
    int mid = (ss + se) / 2;
    ConstructSTUtil(arr, ss, mid, si * 2 + 1);
    ConstructSTUtil(arr, mid + 1, se, si * 2 + 2);

    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
}

// Function to construct segment tree
// from given array.This function allocates
// memory for segment tree and calls
// constructSTUtil() to fill the
// allocated memory
static void ConstructST(int[] arr, int n)
{

    // Fill the allocated memory st
    ConstructSTUtil(arr, 0, n - 1, 0);
}

// Driver program to test above functions
static public void Main(string[] args)
{
    int[] arr = { 1, 3, 5, 7, 9, 11 };
    int n = arr.Length;

    // Build segment tree from given array
    ConstructST(arr, n);

    // Print sum of values in array
    // from index 1 to 3
    Console.WriteLine("Sum of values in given range = "
                      + GetSum(n, 1, 3));

    // Add 10 to all nodes at indexes
    // from 1 to 5.
    UpdateRange(n, 1, 5, 10);

    // Find sum after the value is updated
    Console.WriteLine(
        "Updated sum of values in given range = "
        + GetSum(n, 1, 3));
}

} // This code is contributed by Prasad Kandekar(prasad264)

` JavaScript ``

//javascript Program to show segment tree to // demonstrate lazy propagation

let MAX = 1000;

// Ideally, we should not use global // variables and large constant-sized // arrays, we have done it here for // simplicity.

// To store segment tree let tree = new Array(MAX).fill(0);

// To store pending updates let lazy = new Array(MAX).fill(0);

// si -> index of current node in segment tree // ss and se -> Starting and ending // indices of elements for which current // nodes stores sum. // us and ue -> starting and ending indexes // of update query // diff -> which we need to add in the // range us to ue function updateRangeUtil( si,ss, se, us, ue, diff) { // console.log(si,ss,se,us,ue,diff); // If lazy value is non-zero for // current node of segment tree, then // there are some pending updates. So, // we need to make sure that the // pending updates are done before // making new updates. Because this // value may be used by parent after // recursive calls (See last line // of this function) if (lazy[si] != 0) {

    // Make pending updates using
    // value stored in lazy nodes
    tree[si] += (se - ss + 1) * lazy[si];

    // checking if it is not leaf node
    // because if it is leaf node then
    // we cannot go further
    if (ss != se) {

        // We can postpone updating
        // children we don't need
        // their new values now. Since
        // we are not yet updating
        // children of si, we need to
        // set lazy flags for the children
        lazy[si * 2 + 1] += lazy[si];
        lazy[si * 2 + 2] += lazy[si];
    }

    // Set the lazy value for current
    // node as 0 as it has been updated
    lazy[si] = 0;
}

// out of range
if (ss > se || ss > ue || se < us)
    return ;

// Current segment is fully in range
if (ss >= us && se <= ue) {

    // Add the difference to
    // current node
    tree[si] += (se - ss + 1) * diff;

    // Same logic for checking
    // leaf node or not
    if (ss != se) {

        // This is where we store
        // values in lazy nodes,
        // rather than updating the
        // segment tree itself Since
        // we don't need these updated
        // values now we postpone
        // updates by storing values
        // in lazy[]
        lazy[si * 2 + 1] += diff;
        lazy[si * 2 + 2] += diff;
    }
    return;
}

// If not completely in rang,
// but overlaps, recur for children,
let mid = (ss + se) / 2;
updateRangeUtil(Math.floor(si * 2 + 1), Math.floor(ss), Math.floor(mid), Math.floor(us), Math.floor(ue), Math.floor(diff));
updateRangeUtil(Math.floor(si * 2 + 2), Math.floor(mid + 1), Math.floor(se), Math.floor(us), Math.floor(ue), Math.floor(diff));

// And use the result of children
// calls to update this node
tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];

}

// Function to update a range of values // in segment tree // us and eu -> starting and ending // indices of update query // ue -> ending index of update query // diff -> which we need to add in the // range us to ue function updateRange(n, us, ue, diff) { updateRangeUtil(0, 0, n - 1, us, ue, diff); }

// A recursive function to get the sum of // values in given range of the array. // The following are parameters for this function. // si --> Index of current node in the st. // Initially 0 is passed as root is always // at' index 0 // ss & se --> Starting and ending indices // of the segment represented by current // node, i.e., tree[si] // qs & qe --> Starting and ending // indices of query range function getSumUtil( ss, se, qs, qe, si) { // console.log(ss,se,qs,qe,si); // // If lazy flag is set for current // node of segment tree, then there // are some pending updates. So we // need to make sure that the pending // updates are done before // processing the sub sum query if (lazy[si] != 0) {

    // Make pending updates to this
    // node. Note that this node
    // represents sum of elements in
    // arr[ss..se]  and all these
    // elements must be increased by
    // lazy[si]
    tree[si] += (se - ss + 1) * lazy[si];

    // Checking if it is not leaf node
    // because if it is leaf node then
    // we cannot go further
    if (ss != se) {

        // Since we are not yet
        // updating children os si,
        // we need to set lazy values
        // for the children
        lazy[si * 2 + 1] += lazy[si];
        lazy[si * 2 + 2] += lazy[si];
    }

    // unset the lazy value for current
    // node as it has been updated
    lazy[si] = 0;
}

// Out of range
if (ss > se || ss > qe || se < qs)
    return 0;

// At this point we are sure that
// pending lazy updates are done for
// current node. So we can return
// value

// If this segment lies in range
if (ss >= qs && se <= qe)
    return tree[si];

// If a part of this segment overlaps
// with the given range
let mid = (ss + se) / 2;
return getSumUtil(Math.floor(ss), Math.floor(mid), Math.floor(qs), Math.floor(qe), Math.floor(2 * si + 1))
       + getSumUtil(Math.floor(mid + 1), Math.floor(se), Math.floor(qs), Math.floor(qe), Math.floor(2 * si + 2));

}

// Return sum of elements in range from // index qs (query start) to qe (query end). // It mainly uses getSumUtil() function getSum (n, qs, qe) {

// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
    console.log("Invalid Input");
    return -1;
}

// console.log(n,qs,qe); return getSumUtil(0, n - 1, qs, qe, 0); }

// A recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node in st. function constructSTUtil( arr, ss, se, si) {

// console.log(arr,ss,se,si);
// Out of range as ss can never
// be greater than se
if (ss > se)
    return;

// If there is one element in array,
// store it in current node of segment
// tree and return
if (ss == se) {
    tree[si] = arr[ss];
    return;
}

// If there are more than one elements,
// then recur for left and right
// subtrees and store the sum of
// values in this node
let mid = (ss + se) / 2;
constructSTUtil(arr, Math.floor(ss), Math.floor(mid), Math.floor(si * 2 + 1));
constructSTUtil(arr, Math.floor(mid + 1), Math.floor(se), Math.floor(si * 2 + 2));

tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];

}

// Function to construct segment tree // from given array.This function allocates // memory for segment tree and calls // constructSTUtil() to fill the // allocated memory function constructST(arr, n) {

// Fill the allocated memory st
constructSTUtil(arr, 0, n - 1, 0);

}

let arr = [ 1, 3, 5, 7, 9, 11 ];
let n = arr.length;

// Build segment tree from given array
constructST(arr, n);

// Print sum of values in array
// from index 1 to 3
console.log(`Sum of values in given range = ${getSum(n, 1, 3)}`);

// Add 10 to all nodes at indexes
// from 1 to 5.
updateRange(n, 1, 5, 10);
console.log(`Updated sum of values in given range = ${ getSum(n, 1, 3)}`);

// This code is contributed by ksam24000.

``

Output

Sum of values in given range = 15 Updated sum of values in given range = 45

**Time Complexity: O(N)
**Auxiliary Space: O(MAX)

**Applications:

**Advantages:

**Disadvantages: