Java Program to Find the Determinant of a Matrix (original) (raw)

Last Updated : 01 May, 2025

Try it on GfG Practice redirect icon

The **determinant of a matrix is a special calculated value that can only be calculated if the matrix has same number of rows and columns (square matrix). It is helpful in determining the system of linear equations, image processing, and determining whether the matrix is singular or non-singular.

In this article, we are going to learn the step-by-step procedure to calculate the determinant of a matrix and Java implementations using both recursive and non-recursive approaches.

**Procedure to Calculate

**Examples:

**Determinant of 2*2 matrix:

[4, 3]
[2, 3]

= (4*3)-(3*2)
= 12-6
= 6

**Determinant of 3*3 matrix:

[1, 3, -2]
[-1, 2, 1]
[1, 0, -2]

= 1(-4-0)-3(2-1)+(-2)(0-2)
= -4-3+4
= -3

**Note:

Let’s see an example to get a clear concept of the above topic.

Determinant of a Matrix in Java

**Example 1: Finding the determinant of a matrix **using recursion.

Java `

// Java program to find // Determinant of a matrix // using recursion class Geeks {

// Dimension of input square matrix
static final int N = 2;

// Function to get cofactor of
// mat[p][q] in temp[][]. n is
// current dimension of mat[][]
static void getCofactor(int mat[][], int temp[][],
                        int p, int q, int n)
{
    int i = 0, j = 0;

    // Looping for each element
    // of the matrix
    for (int row = 0; row < n; row++) {
        for (int col = 0; col < n; col++) {
            
            // Copying into temporary matrix
            // only those element which are
            // not in given row and column
            if (row != p && col != q) {
                temp[i][j++] = mat[row][col];
                
                // Row is filled, so increase
                // row index and reset col index
                if (j == n - 1) {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/* Recursive function for finding determinant
of matrix. n is current dimension of mat[][]. */
static int determinantOfMatrix(int mat[][], int n)
{
    int D = 0; // Initialize result

    // Base case : if matrix
    // contains single element
    if (n == 1)
        return mat[0][0];

    // To store cofactors
    int temp[][] = new int[N][N];

    // To store sign multiplier
    int sign = 1;

    // Iterate for each element of first row
    for (int f = 0; f < n; f++) {
        
        // Getting Cofactor of mat[0][f]
        getCofactor(mat, temp, 0, f, n);
        D += sign * mat[0][f]
             * determinantOfMatrix(temp, n - 1);

        // terms are to be added
        // with alternate sign
        sign = -sign;
    }

    return D;
}

// function for displaying the matrix 
static void display(int mat[][], int row, int col)
{
    for (int i = 0; i < row; i++) {
        for (int j = 0; j < col; j++)
            System.out.print(mat[i][j]);

        System.out.print("\n");
    }
}

// Driver code
public static void main(String[] args)
{

    int mat[][] = { { 4, 3 }, { 2, 3 } };

    System.out.print("Determinant "
                     + "of the matrix is: "
                     + determinantOfMatrix(mat, N));
}

}

`

Output

Determinant of the matrix is: 6

**Time complexity: O(n3)

**Example 2: **Non-recursive Implementation of finding determinant of a matrix.

Java `

// Java program to find Determinant of a matrix class Geeks {

// Dimension of input square matrix
static final int N = 4;

// Function to get determinant of matrix
static int determinantOfMatrix(int mat[][], int n)
{
    int num1, num2, det = 1, index,
                    total = 1; // Initialize result

    // temporary array for storing row
    int[] temp = new int[n + 1];

    // loop for traversing the diagonal elements
    for (int i = 0; i < n; i++) {
        index = i; // initialize the index

        // finding the index which has non zero value
        while (mat[index][i] == 0 && index < n) {
            index++;
        }
        if (index == n) // if there is non zero element
        {
            // the determinant of matrix as zero
            continue;
        }
        if (index != i) {
            
            // loop for swapping the diagonal element row
            // and index row
            for (int j = 0; j < n; j++) {
                swap(mat, index, j, i, j);
            }
            // determinant sign changes when we shift
            // rows go through determinant properties
            det = (int)(det * Math.pow(-1, index - i));
        }

        // storing the values of diagonal row elements
        for (int j = 0; j < n; j++) {
            temp[j] = mat[i][j];
        }

        // traversing every row below the diagonal
        // element
        for (int j = i + 1; j < n; j++) {
            num1 = temp[i]; // value of diagonal element
            num2 = mat[j]
                      [i]; // value of next row element

            // traversing every column of row
            // and multiplying to every row
            for (int k = 0; k < n; k++) {
                
                // multiplying to make the diagonal
                // element and next row element equal
                mat[j][k] = (num1 * mat[j][k])
                            - (num2 * temp[k]);
            }
            total = total * num1; // Det(kA)=kDet(A);
        }
    }

    // multiplying the diagonal elements to get
    // determinant
    for (int i = 0; i < n; i++) {
        det = det * mat[i][i];
    }
    return (det / total); // Det(kA)/k=Det(A);
}

static int[][] swap(int[][] arr, int i1, int j1, int i2,
                    int j2)
{
    int temp = arr[i1][j1];
    arr[i1][j1] = arr[i2][j2];
    arr[i2][j2] = temp;
    return arr;
}

// Driver code
public static void main(String[] args)
{
    int mat[][] = { { 1, 0, 2, -1 },
                    { 3, 0, 0, 5 },
                    { 2, 1, 4, -3 },
                    { 1, 0, 5, 0 } };

    // Function call
    System.out.printf(
        "Determinant of the matrix is: %d",
        determinantOfMatrix(mat, N));
}

}

`

Output

Determinant of the matrix is: 30

**Time complexity: O(n3)

Similar Reads

Java Basic Programs





















Java Pattern Programs














Java Conversion Programs















Java Classes and Object Programs
















Java Methods Programs











Java Searching Programs




Java 1-D Array Programs













Java 2-D Arrays (Matrix) Programs













Java String Programs