JavaScript Program to Find the Square Root (original) (raw)
Last Updated : 03 Jun, 2024
Given a number N, the task is to calculate the square root of a given number using JavaScript. There are the approaches to calculate the square root of the given number, these are:
Approaches to Find the Square Root of Given Number in JavaScript:
Table of Content
**Basic Examples:
Input: num = 25
Output: 2
Explanation: The square root of 25 is 5.
Input: num = -120
Output: NaN
Explanation: The square root of Negative numbers is NaN.
Input: num = 'Geeks'
Output: NaN
Explanation: The square root of String Value is NaN.
Using Math.sqrt() Method
The Math.sqrt() method is used to find the Square Root of a given number.
**Syntax:
Math.sqrt( value )
**Example: In this example we will find the square root using JavaScript Math.sqrt() method.
JavaScript `
const num1 = 25; const num2 = -120; const num3 = 'Geeks';
// Math.sqrt() function returns the // square root of number console.log('Square Root of ' + num1 + ' is ' + Math.sqrt(num1));
// Math.sqrt() function returns NaN, because // the passed value is negative integer console.log('Square Root of ' + num2 + ' is ' + Math.sqrt(num2));
// Math.sqrt() function returns NaN, because // the passed value is string console.log('Square Root of ' + num3 + ' is ' + Math.sqrt(num3));
`
Output
Square Root of 25 is 5 Square Root of -120 is NaN Square Root of Geeks is NaN
Using JavaScript Math.pow() Method
The Math.pow() method is used calculate the power a number i.e., the value of the number raised to some exponent. To get the square root of any Number, we set the power to 1/2 of that number.
**Syntax:
Math.pow( num, 1/2 )
**Example: In this example, we will calculate the square root of given values using Math.pow() method.
JavaScript `
const num1 = 25; const num2 = -120; const num3 = 'Geeks';
// Math.pow() function returns the // square root of number console.log('Square Root of ' + num1 + ' is ' + Math.pow(num1, 1/2));
// Math.pow() function returns NaN, because // the passed value is negative integer console.log('Square Root of ' + num2 + ' is ' + Math.pow(num2, 1/2));
// Math.pow() function returns NaN, because // the passed value is string console.log('Square Root of ' + num3 + ' is ' + Math.pow(num3, 1/2));
`
Output
Square Root of 25 is 5 Square Root of -120 is NaN Square Root of Geeks is NaN
Using Binary Search
The binary search is used to find the square root of the given number N with precision upto 5 decimal places.
- The square root of number N lies in range 0 ? squareRoot ? N. Initialize start = 0 and end = number.
- Compare the square of the mid integer with the given number. If it is equal to the number, then we found our integral part, else look for the same in the left or right side of mid depending upon the condition.
- After finding an integral part, we will find the fractional part.
- Initialize the increment variable by 0.1 and iteratively calculate the fractional part upto **5 decimal places.
- For each iteration, change increment to **1/10th of its previous value.
- Finally, return the answer computed.
**Example: In this article, we will calculate the square root of the given Number using Binary Search.
JavaScript `
// Function to find the square-root of N function findSqrt(number) { let start = 0, end = number, mid, ans;
// To find integral part of square
// root of number
while (start <= end) {
// Find mid
mid = Math.floor((start + end) / 2);
// If number is perfect square
// then break
if (mid * mid == number) {
ans = mid;
break;
}
// Increment start if integral
// part lies on right side
// of the mid
if (mid * mid < number) {
// First start value should be
// added to answer
ans = start;
// Then start should be changed
start = mid + 1;
}
// Decrement end if integral part
// lies on the left side of the mid
else {
end = mid - 1;
}
}
// To find the fractional part
// of square root upto 5 decimal
let increment = 0.1;
for (let i = 0; i < 5; i++) {
while (ans * ans <= number) {
ans += increment;
}
// Loop terminates,
// when ans * ans > number
ans = ans - increment;
increment = increment / 10;
}
return ans;
}
// Driver Code const n = 36;
console.log(findSqrt(n));
`
Newton's Method
Newton's method, also known as the Newton-Raphson method, is an iterative method for finding the roots of a real-valued function. To find the square root of a number using Newton's method:
- Start with an initial guess ?0__x_0 for the square root.
- Iterate using the formula ??+1=1/2(??+??????/??)until the result converges to the desired accuracy.
Here's how we can implement Newton's method to find the square root of a given number in JavaScript:
JavaScript `
function findSquareRootUsingNewton(number) { if (number < 0) return NaN; // Square root of negative numbers is NaN
let guess = number / 2; // Initial guess
// Iterate until the guess converges
while (Math.abs(guess * guess - number) > Number.EPSILON) {
guess = (guess + number / guess) / 2;
}
return guess;
}
// Test Cases console.log("Square root of 25:", findSquareRootUsingNewton(25)); // Output: 5 console.log("Square root of -120:", findSquareRootUsingNewton(-120)); // Output: NaN console.log("Square root of 'Geeks':", findSquareRootUsingNewton('Geeks')); // Output: NaN
`
Output
Square root of 25: 5 Square root of -120: NaN Square root of 'Geeks': NaN
Similar Reads
- Learn Data Structures with Javascript | DSA using JavaScript Tutorial JavaScript (JS) is the most popular lightweight, interpreted programming language, and might be your first preference for Client-side as well as Server-side developments. But have you thought about using JavaScript for DSA? Learning Data Structures and Algorithms can be difficult when combined with 7 min read
- Learn Algorithms with Javascript | DSA using JavaScript Tutorial This Algorithms with Javascript tutorial is designed to help you understand and implement fundamental algorithms using the versatile JavaScript programming language. Whether you are a beginner in programming or looking to enhance your algorithmic skills, this guide will walk you through essential co 15+ min read