JavaScript Program to Find the Square Root (original) (raw)

Last Updated : 03 Jun, 2024

Given a number N, the task is to calculate the square root of a given number using JavaScript. There are the approaches to calculate the square root of the given number, these are:

Approaches to Find the Square Root of Given Number in JavaScript:

Table of Content

**Basic Examples:

Input: num = 25
Output: 2
Explanation: The square root of 25 is 5.
Input: num = -120
Output: NaN
Explanation: The square root of Negative numbers is NaN.
Input: num = 'Geeks'
Output: NaN
Explanation: The square root of String Value is NaN.

Using Math.sqrt() Method

The Math.sqrt() method is used to find the Square Root of a given number.

**Syntax:

Math.sqrt( value )

**Example: In this example we will find the square root using JavaScript Math.sqrt() method.

JavaScript `

const num1 = 25; const num2 = -120; const num3 = 'Geeks';

// Math.sqrt() function returns the // square root of number console.log('Square Root of ' + num1 + ' is ' + Math.sqrt(num1));

// Math.sqrt() function returns NaN, because // the passed value is negative integer console.log('Square Root of ' + num2 + ' is ' + Math.sqrt(num2));

// Math.sqrt() function returns NaN, because // the passed value is string console.log('Square Root of ' + num3 + ' is ' + Math.sqrt(num3));

`

Output

Square Root of 25 is 5 Square Root of -120 is NaN Square Root of Geeks is NaN

Using JavaScript Math.pow() Method

The Math.pow() method is used calculate the power a number i.e., the value of the number raised to some exponent. To get the square root of any Number, we set the power to 1/2 of that number.

**Syntax:

Math.pow( num, 1/2 )

**Example: In this example, we will calculate the square root of given values using Math.pow() method.

JavaScript `

const num1 = 25; const num2 = -120; const num3 = 'Geeks';

// Math.pow() function returns the // square root of number console.log('Square Root of ' + num1 + ' is ' + Math.pow(num1, 1/2));

// Math.pow() function returns NaN, because // the passed value is negative integer console.log('Square Root of ' + num2 + ' is ' + Math.pow(num2, 1/2));

// Math.pow() function returns NaN, because // the passed value is string console.log('Square Root of ' + num3 + ' is ' + Math.pow(num3, 1/2));

`

Output

Square Root of 25 is 5 Square Root of -120 is NaN Square Root of Geeks is NaN

The binary search is used to find the square root of the given number N with precision upto 5 decimal places.

**Example: In this article, we will calculate the square root of the given Number using Binary Search.

JavaScript `

// Function to find the square-root of N function findSqrt(number) { let start = 0, end = number, mid, ans;

// To find integral part of square
// root of number
while (start <= end) {

    // Find mid
    mid = Math.floor((start + end) / 2);

    // If number is perfect square
    // then break
    if (mid * mid == number) {
        ans = mid;
        break;
    }

    // Increment start if integral
    // part lies on right side
    // of the mid
    if (mid * mid < number) {

        // First start value should be
        // added to answer
        ans = start;

        // Then start should be changed
        start = mid + 1;
    }

    // Decrement end if integral part
    // lies on the left side of the mid
    else {
        end = mid - 1;
    }
}

// To find the fractional part
// of square root upto 5 decimal
let increment = 0.1;

for (let i = 0; i < 5; i++) {
    while (ans * ans <= number) {
        ans += increment;
    }

    // Loop terminates,
    // when ans * ans > number
    ans = ans - increment;
    increment = increment / 10;
}
return ans;

}

// Driver Code const n = 36;

console.log(findSqrt(n));

`

Newton's Method

Newton's method, also known as the Newton-Raphson method, is an iterative method for finding the roots of a real-valued function. To find the square root of a number using Newton's method:

  1. Start with an initial guess ?0__x_0​ for the square root.
  2. Iterate using the formula ??+1=1/2(??+??????/??)until the result converges to the desired accuracy.

Here's how we can implement Newton's method to find the square root of a given number in JavaScript:

JavaScript `

function findSquareRootUsingNewton(number) { if (number < 0) return NaN; // Square root of negative numbers is NaN

let guess = number / 2; // Initial guess

// Iterate until the guess converges
while (Math.abs(guess * guess - number) > Number.EPSILON) {
    guess = (guess + number / guess) / 2;
}

return guess;

}

// Test Cases console.log("Square root of 25:", findSquareRootUsingNewton(25)); // Output: 5 console.log("Square root of -120:", findSquareRootUsingNewton(-120)); // Output: NaN console.log("Square root of 'Geeks':", findSquareRootUsingNewton('Geeks')); // Output: NaN

`

Output

Square root of 25: 5 Square root of -120: NaN Square root of 'Geeks': NaN

Similar Reads

Mathematical









Recursion







Array








Searching






Sorting












Hashing



String







Linked List