Limited rows selection with given column in Pandas | Python (original) (raw)

Last Updated : 24 Oct, 2019

Methods in Pandas like iloc[], iat[] are generally used to select the data from a given dataframe. In this article, we will learn how to select the limited rows with given columns with the help of these methods.

Example 1: Select two columns

import pandas as pd

data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],

`` 'Age' :[ 27 , 24 , 22 , 32 ],

`` 'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],

`` 'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]}

df = pd.DataFrame(data)

print (df.loc[ 1 : 3 , [ 'Name' , 'Qualification' ]])

Output:

 Name Qualification

1 Princi MA 2 Gaurav MCA 3 Anuj Phd

Example 2: First filtering rows and selecting columns by label format and then Select all columns.

import pandas as pd

data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],

`` 'Age' :[ 27 , 24 , 22 , 32 ],

`` 'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],

`` 'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]

`` }

df = pd.DataFrame(data)

print (df.loc[ 0 , :] )

Output:

Address Delhi Age 27 Name Jai Qualification Msc Name: 0, dtype: object

Example 3: Select all or some columns, one to another using .iloc.

import pandas as pd

data = { 'Name' :[ 'Jai' , 'Princi' , 'Gaurav' , 'Anuj' ],

`` 'Age' :[ 27 , 24 , 22 , 32 ],

`` 'Address' :[ 'Delhi' , 'Kanpur' , 'Allahabad' , 'Kannauj' ],

`` 'Qualification' :[ 'Msc' , 'MA' , 'MCA' , 'Phd' ]}

df = pd.DataFrame(data)

print (df.iloc [ 0 : 2 , 1 : 3 ] )

Output:

Age Name 0 27 Jai 1 24 Princi

Similar Reads

Pandas DataFrame Practice Exercises



















Pandas Dataframe Rows Practice Exercise

















Pandas Dataframe Columns Practice Exercise



























Pandas Series Practice Exercise






Pandas Date and Time Practice Exercise




DataFrame String Manipulation




Accessing and Manipulating Data in DataFrame






DataFrame Visualization and Exporting