Lomuto Partition Algorithm (original) (raw)

Last Updated : 15 Nov, 2024

Given an array arr[], the task is to **partition the array by assuming last element as **pivot element.

The partition of an array must satisfy the following two conditions:

**Note: There might me more than one possible partition arrays.

**Examples:

**Input: arr[] = [5, 13, 6, 9, 12, 11, 8]
**Output: [5, 6, **8, 13, 9, 12, 11]
**Explanation: Allelements smaller than pivot element [5, 6] were arranged before it and elements larger than pivot [13, 9, 12, 11] were arranged after it.

**Input: arr[] = [4, 10, 9, 16, 19, 9]
**Output: [4, **9, 9, 10, 16, 19]
**Explanation: Allelements smaller than pivot element [4] were arranged before it and elements larger than or equal to pivot [9, 10, 16, 19] were arranged after it.

Table of Content

Lomuto Algorithm for Array Partition

The **Lomuto partition algorithm divides an array based on a pivot element. One pointer marks the boundary for elements smaller than the pivot, while the other pointer helps in array traversal. As we traverse the array, smaller elements are moved to the left of the boundary and boundary expands. After the traversal, all elements to the left of the boundary are smaller, and those on the right are larger than pivot.

Step-by-step explanation of algorithm:

// C++ program to partition the array // using Lomuto Partition Algorithm #include #include using namespace std;

// Function to partition the array according // to pivot index element void partition(vector &arr) { int n = arr.size(); int pivot = arr[n - 1];

  // i acts as boundary between smaller and 
  // larger element compared to pivot
  int i = -1;
  for (int j = 0; j < n; j++) {
  
      // If smaller element is found expand the 
      // boundary and swapping it with boundary element.
      if (arr[j] < pivot) {
          i++;
          swap(arr[i], arr[j]);
    }
}
  
  // place the pivot at its correct position
  swap(arr[i + 1], arr[n - 1]);

}

int main() { vector arr = {5, 13, 6, 9, 12, 11, 8}; partition(arr);

  for (int i = 0; i < arr.size(); i++) 
      cout << arr[i] << " "; 
return 0;

}

C

// C program to partition the array // using Lomuto Partition Algorithm #include <stdio.h> #include <stdlib.h>

// Function to partition the array according // to pivot index element void partition(int arr[], int n) { int pivot = arr[n - 1];

// i acts as boundary between smaller and 
// larger element compared to pivot
int i = -1;
for (int j = 0; j < n; j++) {
    
    // If smaller element is found expand the 
    // boundary and swapping it with boundary element.
    if (arr[j] < pivot) {
        i++;
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

// place the pivot at its correct position
int temp = arr[i + 1];
arr[i + 1] = arr[n - 1];
arr[n - 1] = temp;

}

int main() { int arr[] = {5, 13, 6, 9, 12, 11, 8}; int n = sizeof(arr) / sizeof(arr[0]); partition(arr, n);

for (int i = 0; i < n; i++) 
    printf("%d ", arr[i]); 
return 0;

}

Java

// Java program to partition the array // using Lomuto Partition Algorithm import java.util.Arrays;

class GfG {

// Function to partition the array according 
// to pivot index element
static void partition(int[] arr) {
    int n = arr.length;
    int pivot = arr[n - 1];
    
    // i acts as boundary between smaller and 
    // larger element compared to pivot
    int i = -1;
    for (int j = 0; j < n; j++) {
        
        // If smaller element is found expand the 
        // boundary and swapping it with boundary element.
        if (arr[j] < pivot) {
            i++;
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    
    // place the pivot at its correct position
    int temp = arr[i + 1];
    arr[i + 1] = arr[n - 1];
    arr[n - 1] = temp;
}

public static void main(String[] args) {
    int[] arr = {5, 13, 6, 9, 12, 11, 8};
    partition(arr);
    
      for (int ele: arr)
    System.out.print(ele + " ");
}

}

Python

Python program to partition the array

using Lomuto Partition Algorithm

def partition(arr): n = len(arr) pivot = arr[n - 1]

# i acts as boundary between smaller and 
# larger element compared to pivot
i = -1
for j in range(n):
    
    # If smaller element is found expand the 
    # boundary and swapping it with boundary element.
    if arr[j] < pivot:
        i += 1
        arr[i], arr[j] = arr[j], arr[i]

# place the pivot at its correct position
arr[i + 1], arr[n - 1] = arr[n - 1], arr[i + 1]

if name == "main": arr = [5, 13, 6, 9, 12, 11, 8] partition(arr) for ele in arr: print(ele, end = ' ')

C#

// C# program to partition the array // using Lomuto Partition Algorithm using System;

class GfG {

// Function to partition the array according 
// to pivot index element
static void partition(int[] arr) {
    int n = arr.Length, temp;
    int pivot = arr[n - 1];
    
    // i acts as boundary between smaller and 
    // larger element compared to pivot
    int i = -1;
    for (int j = 0; j < n; j++) {
        
        // If smaller element is found expand the 
        // boundary and swapping it with boundary element.
        if (arr[j] < pivot) {
            i++;
            temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    
    // place the pivot at its correct position
    temp = arr[i+1];
    arr[i+1] = arr[n-1];
    arr[n-1] = temp;
}

static void Main() {
    int[] arr = {5, 13, 6, 9, 12, 11, 8};
    partition(arr);
    
    Console.WriteLine(string.Join(" ", arr));
}

}

JavaScript

// JavaScript program to partition the array // using Lomuto Partition Algorithm

// Function to partition the array according // to pivot index element function partition(arr) { let n = arr.length; let pivot = arr[n - 1];

// i acts as boundary between smaller and 
// larger element compared to pivot
let i = -1;
for (let j = 0; j < n; j++) {
    
    // If smaller element is found expand the 
    // boundary and swapping it with boundary element.
    if (arr[j] < pivot) {
        i++;
        [arr[i], arr[j]] = [arr[j], arr[i]];
    }
}

// place the pivot at its correct position
[arr[i + 1], arr[n - 1]] = [arr[n - 1], arr[i + 1]];

}

// Driver Code let arr = [5, 13, 6, 9, 12, 11, 8]; partition(arr); console.log(arr.join(" "));

`

**Time Complexity: O(n), for array traversal.
**Auxiliary Space: O(1)

Some Interesting Facts