Longest Span with same Sum in two Binary arrays (original) (raw)

Last Updated : 10 Oct, 2024

Try it on GfG Practice redirect icon

Given two binary arrays, a[] and b[] of the same size n. Find the length of the longest common span (i, j) where j >= i such that a[i] + a[i+1] + .... + a[j] = b[i] + b[i+1] + .... + b[j].

**Examples:

**Input: a[] = {0, 1, 0, 0, 0, 0}
b[] = {1, 0, 1, 0, 0, 1}
**Output: 4
The longest span with same sum is from index 1 to 4.

**Input: a[] = {0, 1, 0, 1, 1, 1, 1}
b[] = {1, 1, 1, 1, 1, 0, 1}
**Output: 6
The longest span with same sum is from index 1 to 6.

**Input: a[] = {0, 0, 0}
b[] = {1, 1, 1}
**Output: 0

**Input: a[] = {0, 0, 1, 0}
b[] = {1, 1, 1, 1}
**Output: 1

Naive Approach - O(n^2) Time and O(1) Space

One by one by consider same subarrays of both arrays. For all subarrays, compute sums and if sums are same and current length is more than max length, then update max length. Below is C++ implementation of the simple approach.

C++ `

// A Simple C++ program to find longest common // subarray of two binary arrays with same sum #include<bits/stdc++.h> using namespace std;

// Returns length of the longest common subarray // with same sum int longestCommonSum(vector& a, vector& b) {

int res = 0;

// One by one pick all possible starting points
// of subarrays
int n = a.size();
for (int i = 0; i < n; i++) {
  
    // Initialize sums of current subarrays
    int sum1 = 0, sum2 = 0;

    // Consider all ending points starting with a[i]
    for (int j = i; j < n; j++) {
        sum1 += a[j];
        sum2 += b[j];

        // If sums are the same and current length
        // is more than res, update res
        if (sum1 == sum2) {
           res = max(res, j - i + 1);
        }
    }
}
return res;

}

int main() { vector a = {0, 1, 0, 1, 1, 1, 1}; vector b = {1, 1, 1, 1, 1, 0, 1};
cout << longestCommonSum(a, b); return 0; }

Java

// A Simple Java program to find longest common // subarray of two binary arrays with same sum

class Test { static int a[] = new int[]{0, 1, 0, 1, 1, 1, 1}; static int b[] = new int[]{1, 1, 1, 1, 1, 0, 1};

// Returns length of the longest common sum in a[]
// and b[]. Both are of same size n.
static int longestCommonSum(int n)
{
    // Initialize result
    int maxLen = 0;
 
    // One by one pick all possible starting points
    // of subarrays
    for (int i=0; i<n; i++)
    {
       // Initialize sums of current subarrays
       int sum1 = 0, sum2 = 0;
 
       // Consider all points for starting with arr[i]
       for (int j=i; j<n; j++)
       {
           // Update sums
           sum1 += a[j];
           sum2 += b[j];
 
           // If sums are same and current length is
           // more than maxLen, update maxLen
           if (sum1 == sum2)
           {
             int len = j-i+1;
             if (len > maxLen)
                maxLen = len;
           }
       }
    }
    return maxLen;
}

// Driver method to test the above function
public static void main(String[] args) 
{
    System.out.print("Length of the longest common span with same sum is ");
    System.out.println(longestCommonSum(a.length));
}

}

Python

A Simple python program to find longest common

subarray of two binary arrays with same sum

Returns length of the longest common subarray

with same sum

def longestCommonSum(a, b, n):

# Initialize result
maxLen = 0

# One by one pick all possible starting points
# of subarrays
for i in range(0,n):

    # Initialize sums of current subarrays
    sum1 = 0
    sum2 = 0

    # Consider all points for starting with arr[i]
    for j in range(i,n):

        # Update sums
        sum1 += a[j]
        sum2 += b[j]

        # If sums are same and current length is
        # more than maxLen, update maxLen
        if (sum1 == sum2):
            len = j-i+1
            if (len > maxLen):
                maxLen = len

return maxLen

Driver program to test above function

a = [0, 1, 0, 1, 1, 1, 1] b = [1, 1, 1, 1, 1, 0, 1] n = len(a) print("Length of the longest common span with same " "sum is",longestCommonSum(a, b, n))

This code is contributed by

Smitha Dinesh Semwal

C#

// A Simple C# program to find // longest common subarray of // two binary arrays with same sum using System;

class GFG { static int[] a = new int[]{0, 1, 0, 1, 1, 1, 1}; static int[] b = new int[]{1, 1, 1, 1, 1, 0, 1};

// Returns length of the longest // common sum in a[] and b[]. // Both are of same size n. static int longestCommonSum(int n) { // Initialize result int maxLen = 0;

// One by one pick all possible 
// starting points of subarrays
for (int i = 0; i < n; i++)
{
// Initialize sums of current 
// subarrays
int sum1 = 0, sum2 = 0;

// Consider all points for 
// starting with arr[i]
for (int j = i; j < n; j++)
{
    // Update sums
    sum1 += a[j];
    sum2 += b[j];

    // If sums are same and current 
    // length is more than maxLen, 
    // update maxLen
    if (sum1 == sum2)
    {
        int len = j - i + 1;
        if (len > maxLen)
            maxLen = len;
    }
}
}
return maxLen;

}

// Driver Code public static void Main() { Console.Write("Length of the longest " + "common span with same sum is "); Console.Write(longestCommonSum(a.Length)); } }

// This code is contributed // by ChitraNayal

JavaScript

PHP

b,b, b,n) { // Initialize result $maxLen = 0; // One by one pick all possible // starting points of subarrays for ($i = 0; i<i < i<n; $i++) { // Initialize sums of // current subarrays sum1=0;sum1 = 0; sum1=0;sum2 = 0; // Consider all points // for starting with arr[i] for ($j = i;i; i;j < n;n; n;j++) { // Update sums sum1+=sum1 += sum1+=a[$j]; sum2+=sum2 += sum2+=b[$j]; // If sums are same and current // length is more than maxLen, // update maxLen if ($sum1 == $sum2) { len=len = len=j - $i + 1; if ($len > $maxLen) maxLen=maxLen = maxLen=len; } } } return $maxLen; } // Driver Code $a = array(0, 1, 0, 1, 1, 1, 1); $b = array (1, 1, 1, 1, 1, 0, 1); n=sizeof(n = sizeof(n=sizeof(a); echo "Length of the longest common span ". "with same ", "sum is ", longestCommonSum($a, b,b, b,n); // This code is contributed by aj_36 ?>

`

Expected Approach 1 - O(n) Time and O(n) Space

The idea is based on the below observations.

  1. Since there are total n elements, maximum sum is n for both arrays.
  2. The difference between two sums varies from **-n to **n. So there are total 2n + 1 possible values of difference.
  3. If differences between prefix sums of two arrays become same at two points, then subarrays between these two points have same sum.

Below is the implementation of above algorithm.

C++ `

// A O(n) and O(n) extra space C++ program to find // longest common subarray of two binary arrays with // same sum #include<bits/stdc++.h> using namespace std;

// Returns length of the longest common sum in a[] // and b[]. Both are of same size n. int longestCommonSum(vector& a, vector& b) { int res = 0;

// Prefix sums of two arrays
int preSum1 = 0, preSum2 = 0;

// Create an array to store starting and ending
// indexes of all possible diff values. diff[i]
// would store starting and ending points for
// difference "i-n"
int n = a.size();
vector<int> diff(2 * n + 1, -1);

// Traverse both arrays
for (int i = 0; i < n; i++) {
  
    // Update prefix sums
    preSum1 += a[i];
    preSum2 += b[i];

    // Compute current diff and index to be used
    // in diff array. Note that diff can be negative
    // and can have minimum value as -n.
    int curr_diff = preSum1 - preSum2;
    int diffIndex = n + curr_diff;

    // If current diff is 0, then there are same number
    // of 1's and 0's so far in both arrays, i.e., (i+1) is
    // maximum length.
    if (curr_diff == 0)
        res = i + 1;

    // If current diff is seen first time, update
    // starting index of diff.
    else if (diff[diffIndex] == -1)
        diff[diffIndex] = i;

    // Current diff is already seen which means 
    // there lies curr_diff = 0 in between
    else {
      
        // Find length of this same sum by 
        // calculating the common span and
        // update result if required
        res = max(res, i - diff[diffIndex]);
    }
}
return res;

}

// Driver code int main() { vector a = {0, 1, 0, 1, 1, 1, 1}; vector b = {1, 1, 1, 1, 1, 0, 1}; cout << longestCommonSum(a, b); return 0; }

Java

// A O(n) and O(n) extra space Java program to find // longest common subarray of two binary arrays with // same sum

class Test { static int a[] = new int[]{0, 1, 0, 1, 1, 1, 1}; static int b[] = new int[]{1, 1, 1, 1, 1, 0, 1};

// Returns length of the longest common sum in a[]
// and b[]. Both are of same size n.
static int longestCommonSum(int n)
{
    // Initialize result
    int maxLen = 0;
 
    // Initialize prefix sums of two arrays
    int preSum1 = 0, preSum2 = 0;
 
    // Create an array to store starting and ending
    // indexes of all possible diff values. diff[i]
    // would store starting and ending points for
    // difference "i-n"
    int diff[] = new int[2*n+1];
 
    // Initialize all starting and ending values as -1.
    for (int i = 0; i < diff.length; i++) {
        diff[i] = -1;
    }
 
    // Traverse both arrays
    for (int i=0; i<n; i++)
    {
        // Update prefix sums
        preSum1 += a[i];
        preSum2 += b[i];
 
        // Compute current diff and index to be used
        // in diff array. Note that diff can be negative
        // and can have minimum value as -1.
        int curr_diff = preSum1 - preSum2;
        int diffIndex = n + curr_diff;
 
        // If current diff is 0, then there are same number
        // of 1's so far in both arrays, i.e., (i+1) is
        // maximum length.
        if (curr_diff == 0)
            maxLen = i+1;
 
        // If current diff is seen first time, then update
        // starting index of diff.
        else if ( diff[diffIndex] == -1)
            diff[diffIndex] = i;
 
        // Current diff is already seen
        else
        {
            // Find length of this same sum common span
            int len = i - diff[diffIndex];
 
            // Update max len if needed
            if (len > maxLen)
                maxLen = len;
        }
    }
    return maxLen;
}

// Driver method to test the above function
public static void main(String[] args) 
{
    System.out.print("Length of the longest common span with same sum is ");
    System.out.println(longestCommonSum(a.length));
}

}

Python

Python program to find longest common

subarray of two binary arrays with

same sum

def longestCommonSum(a, b, n):

# Initialize result
maxLen = 0

# Initialize prefix sums of two arrays
presum1 = presum2 = 0

# Create a dictionary to store indices
# of all possible sums
diff = {}

# Traverse both arrays
for i in range(n):
  
    # Update prefix sums
    presum1 += a[i]
    presum2 += b[i]
    
    # Compute current diff which will be
    # used as index in diff dictionary
    curr_diff = presum1 - presum2
    
    # If current diff is 0, then there 
    # are same number of 1's so far in 
    # both arrays, i.e., (i+1) is
    # maximum length.
    if curr_diff == 0:
        maxLen = i+1  
    elif curr_diff not in diff:
        # save the index for this diff
        diff[curr_diff] = i
    else:                  
        # calculate the span length
        length = i - diff[curr_diff]
        maxLen = max(maxLen, length)
    
return maxLen

Driver program

a = [0, 1, 0, 1, 1, 1, 1] b = [1, 1, 1, 1, 1, 0, 1] print("Length of the longest common", " span with same", end = " ") print("sum is",longestCommonSum(a, b, len(a)))

This code is contributed by Abhijeet Nautiyal

C#

// A O(n) and O(n) extra space C# program // to find longest common subarray of two // binary arrays with same sum using System;

class GFG { static int[] a = new int[]{0, 1, 0, 1, 1, 1, 1}; static int[] b = new int[]{1, 1, 1, 1, 1, 0, 1};

// Returns length of the longest // common sum in a[] and b[]. // Both are of same size n. static int longestCommonSum(int n) { // Initialize result int maxLen = 0;

// Initialize prefix sums of 
// two arrays
int preSum1 = 0, preSum2 = 0;

// Create an array to store starting 
// and ending indexes of all possible 
// diff values. diff[i] would store 
// starting and ending points for
// difference "i-n"
int[] diff = new int[2 * n + 1];

// Initialize all starting and ending
// values as -1.
for (int i = 0; i < diff.Length; i++)
{
    diff[i] = -1;
}

// Traverse both arrays
for (int i = 0; i < n; i++)
{
    // Update prefix sums
    preSum1 += a[i];
    preSum2 += b[i];

    // Compute current diff and index to 
    // be used in diff array. Note that 
    // diff can be negative and can have
    // minimum value as -1.
    int curr_diff = preSum1 - preSum2;
    int diffIndex = n + curr_diff;

    // If current diff is 0, then there 
    // are same number of 1's so far in 
    // both arrays, i.e., (i+1) is
    // maximum length.
    if (curr_diff == 0)
        maxLen = i + 1;

    // If current diff is seen first time, 
    // then update starting index of diff.
    else if ( diff[diffIndex] == -1)
        diff[diffIndex] = i;

    // Current diff is already seen
    else
    {
        // Find length of this same 
        // sum common span
        int len = i - diff[diffIndex];

        // Update max len if needed
        if (len > maxLen)
            maxLen = len;
    }
}
return maxLen;

}

// Driver Code public static void Main() { Console.Write("Length of the longest common " + "span with same sum is "); Console.WriteLine(longestCommonSum(a.Length)); } }

// This code is contributed // by Akanksha Rai(Abby_akku)

JavaScript

`

**Expected Approach 2 - Prefix Sum and Hashing - O(n) Time and O(n) Space

  1. Find difference array arr[] such that arr[i] = a[i] - b[i].
  2. Largest subarray with equal number of 0s and 1s in the difference array. C++ `

// C++ program to find largest subarray // with equal number of 0's and 1's. #include <bits/stdc++.h> using namespace std;

// Returns largest common subarray with equal // number of 0s and 1s in both a and b. int longestCommonSum(vector& a, vector& b) {

// Find difference between the two
int n = a.size();
vector<int> arr(n);
for (int i = 0; i < n; i++)
    arr[i] = a[i] - b[i];

// Creates an empty hashMap m
unordered_map<int, int> m;

int sum = 0;     // Initialize sum of elements
int max_len = 0; // Initialize result

// Traverse through the given array
for (int i = 0; i < n; i++) {
    sum += arr[i];

    // To handle sum=0 at last index
    if (sum == 0)
        max_len = i + 1;

    // If this sum is seen before, 
    // then update max_len if required
    if (m.find(sum) != m.end())
        max_len = max(max_len, i - m[sum]);
  
    else 
        m[sum] = i;
}

return max_len;

}

int main() { vector a = {0, 1, 0, 1, 1, 1, 1}; vector b = {1, 1, 1, 1, 1, 0, 1}; cout << longestCommonSum(a, b); return 0; }

Java

// Java program to find largest subarray // with equal number of 0's and 1's. import java.io.; import java.util.;

class GFG {

// Returns largest common subarray with equal 
// number of 0s and 1s
static int longestCommonSum(int[] a, int[] b, int n)
{
    // Find difference between the two
    int[] arr = new int[n];
    for (int i = 0; i < n; i++) 
        arr[i] = a[i] - b[i];

    // Creates an empty hashMap hM 
    HashMap<Integer, Integer> hM = new HashMap<>();

    int sum = 0;     // Initialize sum of elements 
    int max_len = 0; // Initialize result 

    // Traverse through the given array 
    for (int i = 0; i < n; i++) 
    { 
        // Add current element to sum 
        sum += arr[i]; 

        // To handle sum=0 at last index 
        if (sum == 0) 
            max_len = i + 1; 

        // If this sum is seen before, 
        // then update max_len if required 
        if (hM.containsKey(sum)) 
            max_len = Math.max(max_len, i - hM.get(sum)); 
        
        else // Else put this sum in hash table 
            hM.put(sum, i); 
    }
    return max_len; 
} 

// Driver code
public static void main(String args[])
{
        int[] a = {0, 1, 0, 1, 1, 1, 1}; 
        int[] b = {1, 1, 1, 1, 1, 0, 1};
        int n = a.length;
        System.out.println(longestCommonSum(a, b, n)); 
}

}

// This code is contributed by rachana soma

Python

Python program to find largest subarray

with equal number of 0's and 1's.

Returns largest common subarray with equal

number of 0s and 1s

def longestCommonSum(a, b, n):

# Find difference between the two 
arr = [0 for i in range(n)]

for i in range(n):
    arr[i] = a[i] - b[i];

# Creates an empty hashMap hM  
hm = {}
sum = 0     # Initialize sum of elements 
max_len = 0     #Initialize result

# Traverse through the given array  
for i in range(n):
    
    # Add current element to sum  
    sum += arr[i]
    
    # To handle sum=0 at last index  
    if (sum == 0):
        max_len = i + 1
    
    # If this sum is seen before,  
    # then update max_len if required 
    if sum in hm:
        max_len = max(max_len, i - hm[sum])
    else:   # Else put this sum in hash table
        hm[sum] = i
return max_len

Driver code

a = [0, 1, 0, 1, 1, 1, 1] b = [1, 1, 1, 1, 1, 0, 1] n = len(a) print(longestCommonSum(a, b, n))

This code is contributed by rag2127

C#

// C# program to find largest subarray // with equal number of 0's and 1's. using System; using System.Collections.Generic; public class GFG {

// Returns largest common subarray with equal // number of 0s and 1s static int longestCommonSum(int[] a, int[] b, int n) {

// Find difference between the two
int[] arr = new int[n];
for (int i = 0; i < n; i++) 
  arr[i] = a[i] - b[i];

// Creates an empty hashMap hM 
Dictionary<int,int> hM = new Dictionary<int,int>();

int sum = 0;     // Initialize sum of elements 
int max_len = 0; // Initialize result 

// Traverse through the given array 
for (int i = 0; i < n; i++) 
{ 

  // Add current element to sum 
  sum += arr[i]; 

  // To handle sum=0 at last index 
  if (sum == 0) 
    max_len = i + 1; 

  // If this sum is seen before, 
  // then update max_len if required 
  if (hM.ContainsKey(sum)) 
    max_len = Math.Max(max_len, i - hM[sum]); 

  else // Else put this sum in hash table 
    hM[sum] = i; 
}
return max_len; 

}

// Driver code static public void Main () { int[] a = {0, 1, 0, 1, 1, 1, 1}; int[] b = {1, 1, 1, 1, 1, 0, 1}; int n = a.Length; Console.WriteLine(longestCommonSum(a, b, n)); } }

// This code is contributed by avanitrachhadiya2155

JavaScript

`