Matplotlib.dates.DateFormatter class in Python (original) (raw)

Last Updated : 21 Apr, 2020

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

Matplotlib.dates.DateFormatter

The matplotlib.dates.DateFormatter class is used to format a tick (in seconds since the epoch) with a string of strftime format. Its base class is matplotlib.ticker.Formatter.

Syntax: class matplotlib.dates.DateFormatter(fmt, tz=None)

Parameters:

  1. fmt: It accepts a strftime format string for formatting and is a required argument.
  2. tz: It holds information regarding the timezone. If set to none it ignores the timezone information while formatting of the date string.

Example 1:

import numpy

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import pandas

total_bars = 25

numpy.random.seed(total_bars)

dates = pandas.date_range( '3/4/2020' ,

`` periods = total_bars,

`` freq = 'm' )

diff = pandas.DataFrame(

`` data = numpy.random.randn(total_bars),

`` index = dates,

`` columns = [ 'A' ]

)

figure, axes = plt.subplots(figsize = ( 10 , 6 ))

axes.xaxis.set_major_formatter(mdates.DateFormatter( '%Y-%m' ))

axes.bar(diff.index,

`` diff[ 'A' ],

`` width = 25 ,

`` align = 'center' )

Output:

Example 2:

import matplotlib

import matplotlib.pyplot as plt

from datetime import datetime

origin = [ '2020-02-05 17:17:55' ,

`` '2020-02-05 17:17:51' ,

`` '2020-02-05 17:17:49' ]

a = [datetime.strptime(d, '%Y-%m-%d %H:%M:%S' ) for d in origin]

b = [ '35.764299' , '20.3008' , '36.94704' ]

x = matplotlib.dates.date2num(a)

formatter = matplotlib.dates.DateFormatter( '%H:%M:%S' )

figure = plt.figure()

axes = figure.add_subplot( 1 , 1 , 1 )

axes.xaxis.set_major_formatter(formatter)

plt.setp(axes.get_xticklabels(), rotation = 15 )

axes.plot(x, b)

plt.show()

Output:

Similar Reads