Matplotlib.pyplot.plot() function in Python (original) (raw)

Last Updated : 26 Apr, 2025

The **matplotlib.pyplot.plot() is used to create 2D plots such as line graphs and scatter plots. The **plot() function allows us to plot data points, customize line styles, markers and colors making it useful for various types of visualizations. In this article, we’ll see how to use this function to plot data in Python.

**Syntax: matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)

**Parameters:

**Returns: A list of Line2D objects each representing a segment of the plotted data.

There are many ways of creating plot using **Matplotlib.pyplot.plot() function some of their examples are:

**Example 1: Line Plots in Matplotlib

Here we use Matplotlib‘s **plot() function to create a simple line plot with the data [1, 2, 3, 4, 5].

Python `

import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4, 5]) plt.title('Basic Line Plot') plt.show()

`

**Output:

matplot1

Basic Line Plot

**Example 2: Multiple Lines Using Matplotlib

We will plot sine and cosine functions on the same graph.

import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) plt.plot(x, y1, label='Sin(x)', color='blue') plt.plot(x, y2, label='Cos(x)', color='red', linestyle='--') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Multiple Lines Plot') plt.legend() plt.show()

`

**Output:

matplot2

Multiple Lines Plot

**Example 3: Scatter Plot with Custom Markers

We will generate and customize scatter plot with 50 random data points featuring red circular markers.

import matplotlib.pyplot as plt import numpy as np np.random.seed(42) x = np.random.rand(50) y = np.random.rand(50) plt.plot(x, y, marker='o', linestyle='', color='red', label='Scatter Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot Example') plt.legend() plt.show()

`

**Output:

matplot3

Scatter Plot with Multiple Markers

**Example 4: Plotting Multiple Curves

We are creating a line plot with two curves: a blue curve [Tex]y = x^2[/Tex]and an orange curve [Tex]y = 1 – x^3[/Tex] generating data randomly. The plot is limited to the range [0, 1] on both axes showcasing a visual representation of mathematical functions.

Python `

import matplotlib.pyplot as plt import numpy as np np.random.seed(19680801) xdata = np.random.random([2, 10]) xdata1 = xdata[0, :] xdata2 = xdata[1, :] xdata1.sort() xdata2.sort() ydata1 = xdata1 ** 2 ydata2 = 1 - xdata2 ** 3 plt.plot(xdata1, ydata1, color ='tab:blue') plt.plot(xdata2, ydata2, color ='tab:orange') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.title('matplotlib.pyplot.plot() example 2') plt.show()

`

**Output:

matplot4

Two Curves Plot

With the flexibility to customize line styles, markers and colors Matplotlib’s plot() function provides various possibilities for visualizing our data in Python.